Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 517))

Abstract

Movement control is accomplished by complex interactions among various groups of nerve cells in the central nervous system. One such important group of neurons is located in the substantia nigra in the ventral midbrain. Nigral neurons give rise to an extensive network of axonal processes that innervate the basal ganglia, establishing predominantly symmetrical synapses with dendritic spines and shafts of medium spiny projection neurons. 1,2 Neurons of the substantia nigra communicate with neurons of the basal ganglia by liberating the neurotransmitter dopamine (DA). Such an interaction at the biochemical level is responsible for the fine tuning of an organism’s movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Picket VM, Beckley SC, Joh TH et al. Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum. Brain Res 1981; 225:373–385.

    Google Scholar 

  2. Freund TF, Powell JF, Smith AD. Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 1984; 13:1189–1215.

    PubMed  CAS  Google Scholar 

  3. Parkinson J. An Essay on the Shaking Palsy. London: Sherwood, Neely, and Jones, 1817.

    Google Scholar 

  4. Tr¨¦tiakoff C. Contribution ¨¤ l’¨¦tude de l’anatomie pathologique du locus niger de Sömmering. Paris: Universit¨¦ de Paris, 1919.

    Google Scholar 

  5. Ehringer H, Hornykiewicz O. Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) in Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 1960; 38:1236–1239.

    PubMed  CAS  Google Scholar 

  6. Walton JN. Brain’s Diseases of the Nervous System. Oxford: Oxford University Press, 1977.

    Google Scholar 

  7. Wooten GF, Parkinsonism. In: Pearlman AL, Collins RC, eds. Neurobiology of Disease. New York¡ªOxford: Oxford University Press, 1990:454-468,

    Google Scholar 

  8. Rewcastle NB. Degenerative diseases of the Central Nervous System. In: Davis RL, Robertson DM, eds. Textbook of Neuropathology, 2nd edn, Baltimore: Williams & Wilkins 1991:904-961,

    Google Scholar 

  9. Fahn S. Parkinson’s disease and other basal ganglion disorders. In: Asbury AK, McKhann GM, McDonald WI, eds. Diseases of the Nervous System: Clinical Neurobiology, 2nd ed. Philadelphia: W.B. Saunders Co. 1992:1144–1158.

    Google Scholar 

  10. American Academy of Neurology. Publication “Parkinson’s Disease” (Brain Matters Series). St. Paul, MN 1997.

    Google Scholar 

  11. Chinaglia G, Alvarez FJ, Probst A et al. Mesostriatal and mesolimbic dopamine uptake binding sites are reduced in Parkinson’s disease and progressive supranuclear palsy: A quantitative autoradiographic study using [3H]mazindol. Neuroscience 1992; 49:317–327.

    PubMed  CAS  Google Scholar 

  12. German DC, Manaye K, Smith WK et al. Midbrain dopaminergic cell loss in Parkinson’s disease: Computer visualization. Ann Neurol 1989; 26:507–514.

    PubMed  CAS  Google Scholar 

  13. Leenders KL, Salmon EP, Tyrrell P et al. The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 1990; 47:1290–1298.

    PubMed  CAS  Google Scholar 

  14. Was J, Weihmuller FB, Brunner LC et al. Selective increase of NMDA-sensitive glutamate binding in the striatum of Parkinson’s disease, Alzheimer’s disease, and mixed Parkinson’s disease/Alzheimer’s disease patients: An autoradiographic study. J Neurosci 1994; 14:6317–6324.

    Google Scholar 

  15. Nieoullon A, Kerkerian-Le Goff L. Cellular interactions in the striatum involving neuronal systems using “classical” neurotransmitters: Possible functional implications. Mvmt Disord 1992; 7:311–325.

    CAS  Google Scholar 

  16. Robertson RG, Clarke CA, Boyce S et al. The role of striatopallidal neurones utilizing gammaaminobutyric acid in the pathophysiology of MPTP-induced parkinsonism in the primate: Evidence from [3H]flunitrazepam autoradiography. Brain Res 1990; 531:95–104.

    PubMed  CAS  Google Scholar 

  17. Carlsson A, Fornstedt B. Possible mechanisms underlying the special vulnerability of dopaminergic neurons. Acta Neurol Scand 1991; 84[Suppl 136]:16–18.

    Google Scholar 

  18. Caine S, Schoenberg B, Martin W et al. Familial Parkinson’s disease: Possible role of environmental factors. J Can Sci Neurol 1987; 14:303–305.

    Google Scholar 

  19. Golbe LI. The genetics of Parkinson’s disease: A reconsideration. Neurology 1990; 40[Suppl 3]:7–14.

    Google Scholar 

  20. Golbe LI, Di Iorio G, Bonavita V et al. A large kindred with autosomal dominant Parkinson’s disease. Ann Neurol 1990; 27:276–282.

    PubMed  CAS  Google Scholar 

  21. Martin WE, Resch JA, Baker AB. Juvenile Parkinsonism. Arch Neurol 1971; 25:494–500.

    PubMed  CAS  Google Scholar 

  22. Yokochi M, Narabayashi H, lizuka R et al. Juvenile Parkinsonism-Some clinical, pharmacological, and neuropathological aspects. Adv Neurol 1984; 40:407–413.

    PubMed  CAS  Google Scholar 

  23. Narabayashi H, Yokochi M, Iizuka R et al. Juvenile Parkinsonism. In: Vinken PJ, Bruyn GW, Klawans HL, eds. Handbook of Clinical Neurology. Amsterdam: Elsevier 1986; 49:153–165.

    Google Scholar 

  24. Matsumine H, Saito M, Shimoda-Matsubayashi S et al. Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2–27. Am J Hum Genet 1997; 60:2–27.

    PubMed  CAS  Google Scholar 

  25. Cotzias GC, Papavasiliou PS, Gellene R. Modification of Parkinsonism: Chronic treatment with L-Dopa. N Engl J Med 1969; 280:337–345.

    PubMed  CAS  Google Scholar 

  26. Lustig HS, von B Ahern K, Greenberg DA. Antiparkinsonian drugs and in vitro excitotoxicity. Brain Res 1992; 597:148–150.

    PubMed  CAS  Google Scholar 

  27. Olney JW, Price MT, Labruyere J et al. Anti-Parkinsonian agents are phencyclidine agonists and N-methyl-aspartate antagonists. Eur J Pharmacol 1987; 142:319–320.

    PubMed  CAS  Google Scholar 

  28. Klockgether T, Turski L, Honor¨¦ T et al. The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Ann Neurol 1991; 30:717–723.

    PubMed  CAS  Google Scholar 

  29. Klockgether T, Turski L. NMDA antagonists potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats. Ann Neurol 1990; 28:539–546.

    PubMed  CAS  Google Scholar 

  30. Greenamyre JT, O’Brien CF. N-methyl-o-aspartate antagonists in the treatment of Parkinson’s disease. Arch Neurol 1991; 48:977–981.

    PubMed  CAS  Google Scholar 

  31. Starr MS. Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson’s disease. Synapse 1995; 19:264–293.

    PubMed  CAS  Google Scholar 

  32. Bartholini G, Scatton B, Zivkovic B et al. GABA receptor agonists and extrapyramidal motor function: Therapeutic implications for Parkinson’s disease. Adv Neurol 1987; 45:79–83.

    PubMed  CAS  Google Scholar 

  33. Laitinen LV, Bergenheim AT, Hariz MI. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 1992; 76:53–61.

    PubMed  CAS  Google Scholar 

  34. Olson L. On the use of transplants to counteract the symptoms of Parkinson’s disease: Background, experimental models, and possible clinical applications. In: Cotman CW, ed. Synaptic Plasticity. New York: Guilford Press 1986:485–505.

    Google Scholar 

  35. Björklund A, Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 1979; 177:555–560.

    PubMed  Google Scholar 

  36. Perlow MJ, Freed WJ, Hoffer BJ et al. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 1979; 204:643–647.

    PubMed  CAS  Google Scholar 

  37. Zigmond MJ, Stricker EM. Animal models of Parkinsonism using selective neurotoxins: Clinical and basic implications. Int Rev Neurobiol 1989; 31:1–79.

    PubMed  CAS  Google Scholar 

  38. Brundin P, Duan W-M, Sauer H. Functional effects of mesencephalic dopamine neurons and adrenal chromaffin cells grafted to the rodent striatum. In: Dunnett SB, Björklund A, eds. Functional Neural Transplantation. New York: Raven Press, 1994:9–46.

    Google Scholar 

  39. Witt TC, Triarhou LC. Transplantation of mesencephalic cell suspensions from wild-type and heterozygous weaver mice into the denervated striatum: Assessing the role of graft-derived dopaminergic dendrites in the recovery of function. Cell Transpl 1995; 4:323–333.

    CAS  Google Scholar 

  40. Bakay RAE, Fiandaca MS, Barrow DL et al. Preliminary report on the use of fetal tissue transplantation to correct MPTP-induced Parkinson-like syndrome in primates. Appl Neurophysiol 1985; 48:358–361.

    PubMed  CAS  Google Scholar 

  41. Triarhou LC, Low WC, Doucet G et al. The weaver mutant mouse as a model for intrastriatal grafting of fetal dopamine neurons. In: Hefti F, Weiner WJ, eds. Progress in Parkinson’s Disease Research-2, Mt. Kisco, New York: Futura Publishing Company 1992:383–393

    Google Scholar 

  42. Ungerstedt U. 6-Hydroxydopamine-induced degeneration of central monoamine neurons. Eur J Pharmacol 1968; 5:107–110.

    PubMed  CAS  Google Scholar 

  43. Ungerstedt U, Arbuthnott GW. Quantitative recording of rotational behavior in rats after 6hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res 1970; 24:485–493.

    PubMed  CAS  Google Scholar 

  44. Marshall JF, Ungerstedt U. Supersensitivity to apomorphine following destruction of the ascending dopamine neurons: Quantification using the rotational model. Eur J Pharmacol 1977; 41:361–367.

    PubMed  CAS  Google Scholar 

  45. Burns RS, Chinch CC, Markey SP et al. A primate model of Parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra byNmethyl-4-phenyl-1 2 36-tetrahydropyridinc. Proc Natl Acad Sci USA 1983; 80:4546–4550.

    PubMed  CAS  Google Scholar 

  46. Langston JW. MPTP and Parkinson’s disease. Trends Neurosci 1985; 8:79–83.

    CAS  Google Scholar 

  47. Triarhou LC, Low WC, Ghetti B. Transplantation of ventral mesencephalic anlagen to hosts with genetic nigrostriatal dopamine deficiency. Proc Natl Acad Sei USA 1986; 83:8789–8793.

    CAS  Google Scholar 

  48. Triarhou LC. Weaver gene expression in central nervous system. In: Conn PM, ed. Gene Expression in Neural Tissues. San Diego: Academic Press 1992:209–227.

    Google Scholar 

  49. Taber Pierce E. Time of origin of neurons in the brain stem of the mouse. Prog Brain Res 1973; 40:53–65

    Google Scholar 

  50. Cotman CW, Synaptic Plasticity. New York: Guilford Press 1986.

    Google Scholar 

  51. Baudry M, Thompson RF, Davis JL. Synaptic Plasticity: Molecular, Cellular, and Functional Aspects. Cambridge, MA: MIT Press 1993.

    Google Scholar 

  52. Wallace RB, Das GD, eds. Neural Tissue Transplantation Research, New York-BerlinHeidelberg-Tokyo: Springer-Verlag 1983.

    Google Scholar 

  53. Sladek JR Jr, Gash DM, eds. Neural Transplants: Development and Function. New York: Raven Press, 1984.

    Google Scholar 

  54. Björklund A, Stenevi U, eds. Neural Grafting in the Mammalian CNS. Amsterdam: Elsevier; 1985.

    Google Scholar 

  55. Azmitia EC, Björklund A, eds. Cell and Tissue Transplantation into the Adult Brain. New York: The New York Academy of Sciences 1987.

    Google Scholar 

  56. Gash DM, Sladek JR Jr, eds. Transplantation into the Mammalian CNS. Amsterdam-New York-Oxford: Elsevier 1988.

    Google Scholar 

  57. Dunnett SB, Richards S-J, eds. Neural Transplantation: From Molecular Basis to Clinical Applications. Amsterdam-New York-Oxford: Elsevier 1990.

    Google Scholar 

  58. Lindvall O, Björklund A, Widner H, eds. Intracerebral Transplantation in Movement Disorders: Experimental Basis and Clinical Experiences. Amsterdam-London-New York-Tokyo: Elsevier 1991.

    Google Scholar 

  59. Dunnett SB, Björklund A, eds. Neural Transplantation: A Practical Approach. Oxford-New York-Tokyo: Oxford University Press 1992.

    Google Scholar 

  60. Dunnett SB, Björklund A, eds. Functional Neural Transplantation. New York: Raven Press, 1994.

    Google Scholar 

  61. Sanberg PR, Wictorin K, Isacson O. Cell Transplantation for Huntington’s Disease. Austin, TX: RG Landes Co. 1994.

    Google Scholar 

  62. Vrbov¨¢ G, Clowry G, N¨®gr¨¢di A et al. Transplantation of Neural Tissue into Spinal Cord. Austin, TX: RG Landes Co. 1994.

    Google Scholar 

  63. Triarhou LC. Neural Transplantation in Cerebellar Ataxia. Austin, TX: RG Landes Co. 1997.

    Google Scholar 

  64. Freed, W.J. Neural Transplantation: An Introduction. Cambridge, MA: MIT Press 2000.

    Google Scholar 

  65. Stenevi U, Björklund A, Svendgaard N-A. Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival. Brain Res 1976; 114:1–20.

    PubMed  CAS  Google Scholar 

  66. Björklund A, Dunnett SB, Stenevi U et al. Reinnervation of the denervated striatum by substantia nigra transplants: Functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res 1980; 199:307–333.

    PubMed  Google Scholar 

  67. Schmidt RH, ingvar M, Lindvall O et al. Functional activity of substantia nigra grafts reinnervating the striatum: Neurotransmitter metabolism and [14C]2-deoxy-u-glucose autoradiography. J Neurochem 1982; 38:737–748.

    PubMed  CAS  Google Scholar 

  68. Jaeger CB. Cytoarchitectonics of substantia nigra grafts: A light and electron microscopic study of immunocytochemically identified dopaminergic neurons and fibrous astrocytes. J Comp Neurol 1985; 231:121–135.

    PubMed  CAS  Google Scholar 

  69. Strömberg I, Johnson S, Hoffer BJ et al. Reinnervation of dopamine-denervated striatum by substantia nigra transplants: Immunohistochemical and electrophysiological correlates. Neuroscience 1985; 14:981–990.

    PubMed  Google Scholar 

  70. Brundin P, Björklund A. Survival, growth and function of dopaminergic neurons grafted to the brain. Prog Brain Res 1987; 71:293–308.

    PubMed  CAS  Google Scholar 

  71. Zetterström T, Brandin P, Gage Fil et al. Spontaneous release of dopamine from intrastriatal nigral grafts as monitored by the intracerebral dialysis technique. Brain Res 1986; 362:344–349.

    PubMed  Google Scholar 

  72. Rose G, Gerhardt G, Strömberg I et al. Monoamine release from dopamine-depleted rat caudate nucleus reinnervated by substantia nigra transplants: An in vivo electrochemical study. Brain Res 1985; 341:92–100.

    PubMed  CAS  Google Scholar 

  73. Freund TF, Bolam JP, Björklund A et al. Efferent synaptic connections of grafted dopaminergic neurons reinnervating the host neostriatum: A tyrosine hydroxylase immunocytochemical study. J Neurosci 1985; 5:603–616.

    PubMed  CAS  Google Scholar 

  74. Mahalik TJ, Finger TE, Strömberg I et al. Substantia nigra transplants into denervated striatum of the rat: Ultrastructure of graft and host interconnections. J Comp Neurol 1985; 240:60–70.

    PubMed  CAS  Google Scholar 

  75. Freed WJ, Ko GN, Niehoff DL et al. Normalization of spiroperidol binding in the denervated rat striatum by homologous grafts of substantia nigra. Science 1983; 222:937–939.

    PubMed  CAS  Google Scholar 

  76. Arbuthnott G, Dunnett SB, MacLeod N. Electrophysiological properties of single units in dopamine-rich mesencephalic transplants in rat brain. Neurosci Lett 1985; 57:205–210.

    PubMed  CAS  Google Scholar 

  77. Björklund A, Schmidt RH, Stenevi U. Functional reinnervation of the neostriatum in the adult rat by use of intraparenchymal grafting of dissociated cell suspensions from the substantia nigra. Cell Tissue Res 1980; 212:39–45.

    PubMed  Google Scholar 

  78. Björklund A, Stenevi U, Dunnett SB et al. Functional reactivation of the deafferented neostriatum by nigral transplants. Nature (Lond) 1981; 289:497–499.

    Google Scholar 

  79. Dunnett SB, Björklund A, Stenevi U et al. Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal dopamine pathway.I. Unilateral lesions. Brain Res 1981; 215:147–161.

    PubMed  CAS  Google Scholar 

  80. Dunnett SB, Björklund A, Stenevi U et al. Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal dopamine pathway.II. Bilateral lesions. Brain Res 1981; 229:457–470.

    PubMed  CAS  Google Scholar 

  81. Brundin P, Isacson O, Gage FH et al. The rotating 6-hydroxydopamine-lesioned mouse as a model for assessing functional effects of neuronal grafting, Brain Res 1986; 366:346–349.

    PubMed  CAS  Google Scholar 

  82. Björklund A, Lindvall O, Isacson O et al. Mechanisms of action of intracerebral neural implants: Studies on nigral and striatal grafts to the lesioned striatum. Trends Neurosci 1987; 10:509–516.

    Google Scholar 

  83. Brundin P, Nilsson OG, Strecker RE et al. Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp Brain Res 1986; 65:235–240.

    PubMed  CAS  Google Scholar 

  84. Clarke DJ, Brundin P, Strecker RE et al. Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: Ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry. Exp Brain Res 1988; 73:115–126.

    PubMed  CAS  Google Scholar 

  85. Lindvall O, Rehncrona S, Gustavii B et al. Fetal dopamine-rich mesencephalic grafts in Parkinson’s disease. Lancet 1988; ii:1483–1484.

    Google Scholar 

  86. Lindvall O, Rehncrona S, Brundin P et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease: A detailed account of methodology and a 6-month follow-up. Arch Neurol 1989; 46:615–631.

    PubMed  CAS  Google Scholar 

  87. Lindvall O. Transplantation into the human brain: Present status and future possibilities. J Neurol Neurosurg Psychiat 1989; Suppl:39–54.

    PubMed  CAS  Google Scholar 

  88. Lindvall O, Brundin P, Widner H et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990; 247:574–577.

    PubMed  CAS  Google Scholar 

  89. Brundin P, Odin P, Widner H. Promising new results with transplantation of nerve cells to the brain in Parkinson disease. Lakartidningen 1990; 87:3761–3763.

    PubMed  CAS  Google Scholar 

  90. Brundin P, Björklund A, Lindvall O. Practical aspects of the use of human fetal brain tissue for intracerebral grafting. Prog Brain Res 1990; 82:707–714.

    PubMed  CAS  Google Scholar 

  91. Lindvall O, Rehncrona S, Brundin P et al. Neural transplantation in Parkinson’s disease: The Swedish experience. Prog Brain Res 1990; 82:729–734.

    PubMed  CAS  Google Scholar 

  92. Lindvall O. Prospects of transplantation in human neurodegenerative diseases. Trends Neurosci 1991; 14:376–384.

    PubMed  CAS  Google Scholar 

  93. Lindvall O, Björklund A, Widner H, eds. Intracerebral Transplantation in Movement Disorders: Experimental Basis and Clinical Experiences. Amsterdam: Elsevier, 1991.

    Google Scholar 

  94. Widner H, Brundin P, Rehncrona S et al. Transplanted allogeneic fetal dopamine neurons survive and improve motor function in idiopathic Parkinson’s disease. Transpl Proc 1991; 23:793–795.

    CAS  Google Scholar 

  95. Lindvall O. Transplants in Parkinson’s disease. Fur Neurol 1991; 31[Suppl 1):17–27.

    Google Scholar 

  96. Lindvall O, Widner H, Rehncrona S et al. Transplantation of fetal dopamine neurons in Parkinson’s disease: One-year clinical and neurophysiological observations in two patients with putaminal implants. Ann Neurol 1992; 31:155–165.

    PubMed  CAS  Google Scholar 

  97. Widner H, Tetrud J, Rehncrona S et al. Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by I-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N Engl J Med 1992; 327:1556–1563.

    PubMed  CAS  Google Scholar 

  98. Widner H, Tetrud J, Rehncrona S et al. Fifteen months’ follow-up on bilateral embryonic mesencephalic grafts in two cases of severe MPTP-induced parkinsonism. Adv Neurol 1993; 60:729–733.

    PubMed  CAS  Google Scholar 

  99. Widner H, Rehncrona S. Transplantation and surgical treatment of parkinsonian syndromes. Curr Opin Neurol Neurosurg 1993; 6:344–349.

    PubMed  CAS  Google Scholar 

  100. Lindvall O, Sawle G, Widner H et al. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 1994; 35:172–180.

    PubMed  CAS  Google Scholar 

  101. Hitchcock ER, Clough C, Hughes R et al. Embryos and Parkinson’s disease. Lancet 1988; I:1274.

    Google Scholar 

  102. Hitchcock ER, Kenny BG, Clough CG et al. Stereotactic implantation of fetal mesencephalon. Stereotact Funct Neurosurg 1990; 54/55:282–289.

    PubMed  Google Scholar 

  103. Quinn NP. The clinical application of cell grafting techniques in patients with Parkinson’s disease. Prog Brain Res 1990; 82:619–625.

    PubMed  CAS  Google Scholar 

  104. Hitchcock ER, Kenny BG, Clough CG et al. Stereotactic implantation of foetal mesencephalon (STIM): The UK experience. Prog Brain Res 1990; 82:723–728.

    PubMed  CAS  Google Scholar 

  105. Henderson BTH, Kenny BG, Hitchcock ER et al. A comparative evaluation of clinical rating scales and quantitative measurements in assessment pre and poststriatal implantation of human foetal mesencephalon in Parkinson’s disease. Acta Neurochir 1991; Suppl 52:48–50.

    CAS  Google Scholar 

  106. Henderson BT, Clough CG, Hughes RC et al. Implantation of human fetal ventral mesencephalon to the right caudate nucleus in advanced Parkinson’s disease. Arch Neurol 1991; 48:822–827.

    PubMed  CAS  Google Scholar 

  107. Hitchcock ER, Kenny BG, Henderson BTH et al. A series of experimental surgery for advanced Parkinson’s disease by foetal mesencephalic transplantation. Acta Neurochir 1991; Suppl 52:54–57.

    CAS  Google Scholar 

  108. Hitchcock ER. Neural implants and recovery of function: Human work. Adv Exp Med Biol 1992; 325:67–78.

    PubMed  CAS  Google Scholar 

  109. Sinden JD, Patel SN, Hodges H. Neural transplantation: Problems and prospects for therapeutic application. Curr Opin Neurol Neurosurg 1992; 5:902–908.

    PubMed  CAS  Google Scholar 

  110. Sawle GV, Bloomfield PM, Björklund A et al. Transplantation of fetal dopamine neurons in Parkinson’s disease: PET [15F]6-L-fluorodopa studies in two patients with putaminal implants. Ann Neurol 1992; 31:166–173.

    PubMed  CAS  Google Scholar 

  111. Henderson B, Good PA, Hitchcock ER et al. Visual evoked cortical responses and electroretinograms following implantation of human fetal mesencephalon to the right caudate nucleus in Parkinson’s disease. J Neurol Sci 1992; 107:183–190.

    PubMed  CAS  Google Scholar 

  112. Sawle GV, Myers R. The role of positron emission tomography in the assessment of human neurotransplantation. Trends Neurosci 1993; 16:172–176.

    PubMed  CAS  Google Scholar 

  113. Madrazo I, Le¨®n V, Torres C et al. Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. N Engl J Med 1988; 318:51.

    PubMed  CAS  Google Scholar 

  114. Madrazo I, Franco-Bourland R, Ostrosky-Solis F et al. Neural transplantation (auto-adrenal, fetal nigral and fetal adrenal) in Parkinson’s disease: The Mexican experience. Prog Brain Res 1990; 82:593–602.

    PubMed  CAS  Google Scholar 

  115. Freed CR, Breeze RE, Rosenberg NL et al. Transplantation of human fetal dopamine cells for Parkinson’s disease: Results at 1 year. Arch Neurol 1990; 47:505–512.

    PubMed  CAS  Google Scholar 

  116. Freed CR, Breeze RE, Rosenberg NL et al. Therapeutic effects of human fetal dopamine cells transplanted in a patient with Parkinson’s disease. Prog Brain Res 1990; 82:715–721.

    PubMed  CAS  Google Scholar 

  117. Fiandaca MS. Brain grafting for Parkinson’s disease. Transplantation 1991; 51:549–556.

    PubMed  CAS  Google Scholar 

  118. Spencer DD, Robbins RJ, Naftolin F et al. Unilateral transplantation of human fetal mesen-cephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N Engl J Med 1992; 327:1541–1548.

    PubMed  CAS  Google Scholar 

  119. Freed CR, Breeze RE, Rosenberg NL et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med 1992; 327:1549–1555.

    PubMed  CAS  Google Scholar 

  120. Bakay RAE. Central nervous system grafting: Animal and clinical results. Stereotact Funct Neurosurg 1992; 58:67–78.

    PubMed  CAS  Google Scholar 

  121. Thompson L. Fetal transplants show promise. Science 1992; 257:868–870.

    PubMed  CAS  Google Scholar 

  122. Langston JW, Widner H, Goetz CG et al. Core assessment program for intracerebral transplantation (CAPIT). Movt Dis 1992; 7:2–13.

    CAS  Google Scholar 

  123. Goetz CG, De Long MR, Penn RD et al. Neurosurgical horizons in Parkinson’s disease. Neurology 1993; 43:1–7.

    PubMed  CAS  Google Scholar 

  124. Freed CR, Breeze RE, Rosenberg NL et al. Embryonic dopamine cell implants as a treatment for the second phase of Parkinson’s disease: Replacing failed nerve terminals. Adv Neurol 1993; 60:721–728

    PubMed  CAS  Google Scholar 

  125. Redmond DE Jr, Robbins RJ, Naftolin F et al. Cellular replacement of dopamine deficit in Parkinson’s disease using human fetal mesencephalic tissue: Preliminary results in four patients. Res Publ Assoc Res Nerv Ment Dis 1993; 71:325–359.

    PubMed  Google Scholar 

  126. Rauch RA, Markham CH, Rand RW et al. MR imaging findings after transplant surgery for Parkinson disease. J Magn Reson Imag 1994; 4:19–24.

    CAS  Google Scholar 

  127. Freeman TB, Olanow CW, Hauser RA et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann Neurol 1995; 38:379–388.

    PubMed  CAS  Google Scholar 

  128. Kordower JH, Freeman TB, Snow BJ et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 1995; 332:1118–1124.

    PubMed  CAS  Google Scholar 

  129. Price LH, Spencer DD, Marek KL et al. Psychiatric status after human fetal mesencephalic tissue transplantation in Parkinson’s disease. Biol Psychiat 1995; 38:498–505.

    PubMed  CAS  Google Scholar 

  130. Olanow CW, Kordower JH, Freeman TB. Fetal nigral transplantation as a therapy for Parkinson’s disease. Trends Neurosci 1996; 19:102–109.

    PubMed  CAS  Google Scholar 

  131. Kopyov OV, Jacques DS, Lieberman A et al. Clinical study of fetal mesencephalic intracerebral transplants for the treatment of Parkinson’s disease. Cell Transplantation 1996; 5:327–337.

    PubMed  CAS  Google Scholar 

  132. Molina H, Quiñones R, Alvarez L et al. Transplantation of human fetal mesencephalic tissue in caudate nucleus as treatment for Parkinson’s disease: The Cuban experience. Restor Neurol 1991; 4:99–110.

    Google Scholar 

  133. Bekhtereva NP, Gilerovich EG, Gurchin FA et al. Transplantation of embryonal nerve tissues in the treatment of Parkinson disease. Z Nevropatol Psikhiat SS Korsakova 1990; 90:10–13.

    CAS  Google Scholar 

  134. Subrt O, Tichy M, Vladyka V et al. Grafting of fetal dopamine neurons in Parkinson’s disease: The Czech experience with severe akinetic patients. Acta Neurochir 1991; Suppl 52:51–53.

    CAS  Google Scholar 

  135. Marsala J, Zigova T, Badonic T et al. Neurotransplantation, critical analysis and perspectives. Bratislav Lekar List 1992; 93:111–122.

    CAS  Google Scholar 

  136. Jones D. Halifax hospital first in Canada to proceed with controversial fetal-tissue transplant. Can Med Assoc J 1992; 146:389–391.

    CAS  Google Scholar 

  137. Lopez-Lozano JJ, Brera B, Bravo G et al. Neural transplants in Parkinson’s disease. Transpl Proc 1993; 25:1005–1011.

    CAS  Google Scholar 

  138. Lopez-Lozano JJ, Bravo G, Brera B et al. Long-term follow-up in 10 Parkinson’s disease patients subjected to fetal brain grafting into a cavity in the caudate nucleus: The Clinics Puerta de Hierro experience. Transpl Proc 1995; 27:1395–1400.

    CAS  Google Scholar 

  139. Iacono RP, Tang ZS, Mazziotta JC et al. Bilateral fetal grafts for Parkinson’s disease: 22 months’ results. Stereotact Funct Neurosurg 1992; 58:84–87.

    PubMed  CAS  Google Scholar 

  140. Zabek M, Mazurowski W, Dymecki J et al. Transplantation of fetal dopaminergic cells in Parkinson disease. Neurol Neurochir Polsk 1992; Suppl 1:13–19.

    Google Scholar 

  141. Remy P, Samson Y, Hantraye P et al. Clinical correlates of [18F]fluorodopa uptake in five grafted parkinsonian patients. Ann Neurol 1995; 38:580–588.

    PubMed  CAS  Google Scholar 

  142. Goetz CG, Bakay RAE, Fine A et al. American Society for Neural Transplantation Registry for fetal mesencephalic implants: Demographic and baseline data. Abstr Am Soc Neural Transpl 1996; 3:25.

    Google Scholar 

  143. Boer GJ. Ethical guidelines for the use of human embryonic or fetal tissue for experimental and clinical neurotransplantation and research. Network of European CNS Transplantation and Restoration (NECTAR). J Neurol 1994; 242:1–13.

    PubMed  CAS  Google Scholar 

  144. Wolfslast G. Legal aspects of neurotransplantation. Zbl Neurochir 1995; 56:210–214.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Triarhou, L.C. (2002). Introduction. In: Dopaminergic Neuron Transplantation in the Weaver Mouse Model of Parkinson’s Disease. Advances in Experimental Medicine and Biology, vol 517. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0699-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0699-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5201-3

  • Online ISBN: 978-1-4615-0699-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics