Advertisement

Agn Host Galaxies: HST at Z ~ 0.1 and Gemini Adaptive Optics at Z ~ 2

  • David Schade
  • Scott Croom
  • Brian Boyle
  • Michael Letawsky
  • Tom Shanks
  • Lance Miller
  • Nicola Loaring
  • Robert Smith

Abstract

A study of 76 host galaxies of Active Galactic Nuclei (AGN) in the local universe (z ~ 0. 1) carried out with Hubble Space Telescope shows that these hosts are remarkably similar to typical field galaxies. They have normal distributions of disk and bulge size and surface brightness and do not show an obvious preponderance of peculiar structures or morphologies which might suggest recent strong interactions. The outstanding characteristic is that early-type galaxies constitute 55% of the AGN host sample compared to 10-20% of the field population suggesting a spheroid-black hole linkage. This AGN sample was selected on the basis of X-ray flux from the Einstein Medium Sensitivity Survey and is expected to show no bias with respect to the host galaxy properties.

There are some challenges associated with comparing this local sample with one at higher redshift. The first requirement is that the two samples be observed at equivalent restframe wavelength and the second is that similar physical resolution in the galaxies frame should be achieved. These two requirements can be met in a satisfactory (but not perfect) manner using adaptive optics on a large-aperture telescope and observing in the K-band. Although the resolution is lower by a factor of a few at z ~ 2 relative to HST observations at z ~ 0.1, it is possible to derive the global properties of the host galaxies in an equivalent manner given sufficient signal-to-noise ratio.

A third and very difficult problem is selecting comparable and unbiased samples at high and low redshift. This problem requires a careful analysis of selection effects. We present Gemini Quick Start observations of two AGNs at z ~ 1.7 with the University of Hawaii Hokupa’a adaptive optics system which delivered resolution of 0.12 arcseconds (FWHM) in the K-band. The guide-star requirement has driven most earlier observers to guide upon the AGN itself which restricts one to highly luminous quasars. This constraint was removed by selecting candidates for observation from the 2dF QSO Redshift Survey (Boyle et al. 2000) allowing us to image typical L ~ L* galaxies at high redshifts and thus greatly strengthen the validity of the comparison between the low and high redshift AGN samples.

Keywords

Active Galactic Nuclei Quasars Galaxies Host Galaxies Cosmological Evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aretxaga, I., Le Mignant, D., Melnick, J., Terlevich, R., Boyle, B. J., 1998, astro-ph/9804322Google Scholar
  2. Aretxaga, I., Boyle, B. J., Terlevich, R., 1995, MNRAS, 275, L27ADSGoogle Scholar
  3. Boyle, B., Shanks, T., Croom, S., Smith, R., Miller, L., Loaring, N., Heymans, C, 2000, MNRAS, 317, 1014ADSCrossRefGoogle Scholar
  4. Boyle, B. J., Terlevich, R. J., 1998, MNRAS, 293, 49ADSCrossRefGoogle Scholar
  5. Chapman, S., Morris, S., Walker, G., 2000 MNRAS, 319, 666ADSCrossRefGoogle Scholar
  6. Chapman, S., Walker, G., Morris, 1999, in Astronomy with adaptive optics: present results and future programs, Proceedings of an ESO/OSA topical meeting, held September 7-11, 1998, Sonthofen, Germany, Publisher: Garching, Germany: Eu-ropean Southern Observatory, 1999, ESO Conference and Workshop Proceedings, vol. 56, Edited by Domenico Bonaccini, p. 73Google Scholar
  7. Coleman, G., Wu, C., Weedman, D., 1980 ApJS, 43, 393ADSCrossRefGoogle Scholar
  8. Ellis, R., Colless, M., Broadhurst, T., Heyl, J., Glazebrook, K., 1996 MNRAS, 280, 235ADSCrossRefGoogle Scholar
  9. Ferrarese, L., Merrit, D., 2000 ApJ, 539, L9ADSCrossRefGoogle Scholar
  10. Hutchings, J., 1995, AJ, 100, 994ADSCrossRefGoogle Scholar
  11. Madau, P., Ferguson, H. C., Dickinson, M. E., Giavalisco, M., Steidel, C. C., Fruchter, A., 1996, MNRAS, 283, 1388ADSCrossRefGoogle Scholar
  12. Magorrian, J. Tremaine, S., Richstone, D. Bender, R., Bower, G., Dressier, A., Faber,S. M., Gebhardt, K., Green, R., Grillmair, C., Kormendy, J., Lauer, T., 1998, AJ, 115, 2285ADSCrossRefGoogle Scholar
  13. Schade, D. Boyle, B. J., Letawsky, M., 2000, MNRAS, 315, 498ADSCrossRefGoogle Scholar
  14. Stocke, J. et al., 1991, ApJS, 76, 813ADSCrossRefGoogle Scholar
  15. Wizinowich, P., Acton, D. S., Shelton, C., Stomski, P., Gathright, J., Ho, K., Lupton,W., Tsubota, K., Lai, O., Max, C., Brase, J., An, J., Avicola, K., Olivier, S., Gavel,D., Macintosh, B., Ghez, A., Larkin, J., 2000, PASP, 112, 315ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • David Schade
    • 1
  • Scott Croom
    • 2
  • Brian Boyle
    • 2
  • Michael Letawsky
    • 3
  • Tom Shanks
    • 4
  • Lance Miller
    • 5
  • Nicola Loaring
    • 5
  • Robert Smith
    • 6
  1. 1.Dominion Astrophysical ObservatoryNational Research Council CanadaCanada
  2. 2.Anglo-Australian ObservatoryAustralia
  3. 3.Subaru TelescopeJapan
  4. 4.University of DurhamUSA
  5. 5.Oxford UniversityUK
  6. 6.Liverpool John Moores UniversityUK

Personalised recommendations