Skip to main content

Effects of Rotation on Transport Processes During Crystal Growth By Solidification

  • Chapter
Processing by Centrifugation
  • 382 Accesses

Abstract

The control of heat flow, dopant segregation, and the shape of the growth interface is an important task in bulk crystal growth.1,2 A flat or slightly convex growth front is highly desired to minimize parasitic nucleation. Dopant uniformity, both radial and axial, is also a major concern. Therefore, better understanding of the melt flow and heat and mass transfer during crystal growth is important. In solidification the intrinsic coupling of transport processes to phenomena at the growth interface strongly influences crystal quality. For example, unstable flow can cause growth striations, sometimes even leading to periodic or chaotic back melting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Brown, Theory of transport processes in single crystal growth from the melt, AIChE J. 34: 881 (1989).

    Article  Google Scholar 

  2. G. Müller and A. Ostrogorsky, Convection in melt growth, in: Handbook of Crystal Growth 2b: Growth Mechanisms and Dynamics, D.T.J. Hurle, ed., North-Holland, Amsterdam (1994).

    Google Scholar 

  3. H.P. Utech and M.C. Flemmings, Elimination of solute banding in indium antimonide crystals by growth in a magnetic Field, J. Appl. Phys. 37: 2021 (1966).

    Article  CAS  Google Scholar 

  4. K.M. Kim, Suppression of thermal convection by transverse magnetic field, J. Electrochem. Soc. 132: 427 (1982).

    Article  Google Scholar 

  5. D.H. Kim, P.M. Adornato, and R.A. Brown, Effect of vertical magnetic field on convection and segregation in vertical Bridgman crystal growth, J. Crystal Growth 89: 339 (1988).

    Article  CAS  Google Scholar 

  6. H.J. Scheel, Accelerated crucible rotation: a novel stirring technique in high- temperature solution growth, J. Crystal Growth 13/14: 560 (1971).

    Article  Google Scholar 

  7. A.V. Anilkumar, R.N. Grugel, R.N. Shen, and T.G. Wang, Control of thermocapillary convection in a liquid bridge by vibration, J. Appl. Phys. 73: 4165 (1993).

    Article  CAS  Google Scholar 

  8. D.V. Lyubimov, T.P. Lyubimova, S. Meradji, and B. Roux, Vibrational control of crystal growth from liquid phase, J. Crystal Growth 180: 648 (1997).

    Article  CAS  Google Scholar 

  9. W.S. Liu, M.F. Wolf, D. Elwell, and R.S. Feigelson, Low frequency vibrational stirring: a new method for radial mixing solutions and melts during growth, J. Crystal Growth 82: 589 (1987).

    Article  CAS  Google Scholar 

  10. W. Yuan, M. Banan, L.L. Regel, and W.R. Wilcox, The effect of vertical vibration of the ampoule on the direction solidification of InSb-GaSb alloy, J. Crystal Growth 151: 235(1995).

    Article  CAS  Google Scholar 

  11. V. Uspenskii and J.J. Favier, High frequency vibration and natural convection in Bridgman-scheme crystal growth, Int. J. Heat Mass Transfer 37: 691 (1994).

    Article  CAS  Google Scholar 

  12. C.W. Lan, Effects of axial vibration on vertical zone-melting processing, Int. J. Heat Mass Transfer 43: 1987 (2000).

    Article  CAS  Google Scholar 

  13. W.A. Arnold, W.R. Wilcox, F. Carlson, A. Chait, L.L. Regel, Transport modes during crystal growth in a centrifuge, J. Crystal Growth 119: 24 (1992).

    Article  Google Scholar 

  14. G. Müller, G. Neumann, and W. Weber, The growth of homogeneous semiconductor crystals in a centrifuge by the stabilizing influence of the Coriolis force, J. Crystal growth 119: 8 (1992).

    Article  Google Scholar 

  15. W.R. Wilcox and L.L. Regel, Influence of centrifugation on transport phenomena, 46th International Astronautical Congress, Oslo, Norway (1995).

    Google Scholar 

  16. W.R. Wilcox, L.L. Regel, and W.A. Arnold, Convection and segregation during vertical Bridgman growth with centrifugation, J. Crystal Growth 187: 543 (1998).

    Article  CAS  Google Scholar 

  17. A. F. Witt, H.C. Gatos, M. Lichtensteiger, M.C. Lavine, and C.J. Herman, Crystal growth and steady state segregation under zero gravity, J. Electrochemical Soc. 122: 276 (1975).

    Article  CAS  Google Scholar 

  18. C.W. Lan, Effects of ampoule rotation on flows and dopant segregation in vertical Bridgman crystal growth, J. Crystal Growth 197: 983 (1999).

    Article  CAS  Google Scholar 

  19. A. Yeckel, F.P. Doty, and J.J. Derby, Effect of steady ampoule rotation on segregation in high-pressure vertical Bridgman growth of cadmium zinc telluride, J. Crystal Growth 203: 87 (1999).

    Article  CAS  Google Scholar 

  20. C.W. Lan, M.C. Liang, J.H. Chian, Influence of steady ampoule rotation on three-dimensional flows and segregation in Bridgman crystal growth, J. Crystal Growth 212: 340 (2000).

    Article  CAS  Google Scholar 

  21. C.W. Lan, Effects of centrifugal acceleration on the flows and segregation in vertical Bridgman crystal growth, J. Crystal Growth, submitted.

    Google Scholar 

  22. C.W. Lan and J.H. Chian, Effects of ampoule rotation on vertical zone-melting crystal growth: steady rotation versus accelerated crucible rotation technique, J. Crystal Growth 203: 286 (1999).

    Article  CAS  Google Scholar 

  23. C.W. Lan, M.C. Liang, J.H. Chian, Suppressing three-dimensional unsteady flows in vertical zone-melting crystal growth, J. Crystal Growth 213: 395 (2000).

    Article  CAS  Google Scholar 

  24. C.W. Lan, M.C. Liang, J.H. Chian, Three-dimensional simulation of vertical zone-melting crystal growth: symmetry breaking to multiple states, J. Crystal Growth 208: 327 (2000).

    Article  CAS  Google Scholar 

  25. W.G. Pfann, Zone Melting (2nd End), John Wiley and Sons, New York (1966), p 97.

    Google Scholar 

  26. W.G. Pfann, C.E. Miller, and J.D. Hunt, New zone refining techniques for chemical compounds, Rev. Sci.lnstr. 37: 649(1966).

    Article  CAS  Google Scholar 

  27. C.W. Lan, J.H. Chian, and T.Y. Wang, Interface control mechanisms in horizontal zone-melting with slow rotation, J. Crystal Growth, in press.

    Google Scholar 

  28. G. Buzyna and G. Veronis, Spin-up of a stratified fluid: theory and experiment, J. Fluid Mech. 50: 579(1971).

    Article  Google Scholar 

  29. M.C. Liang and C.W. Lan, A finite-volume/Newton method for a two-phase heat flow problem using primitive variables and collocated grids, J. Comp. Phys. 127: 330 (1996).

    Article  Google Scholar 

  30. C.W. Lan and M.C. Liang, Multigrid methods for incompressible heat flow problems with an unknown interface, J. Comp. Phys., 152: 55 (1999).

    Article  CAS  Google Scholar 

  31. P.M. Adornato and R.A. Brown, Convection and segregation in directional solidification of dilute and non-dilute binary alloy: effects of ampoule and furnace design, J. Crystal Growth 80: 155 (1987).

    Article  CAS  Google Scholar 

  32. C.W. Lan and F.C. Chen, A finite volume method for solute segregation in directional solidification and comparison with a finite element method, Comput. Meth. Appl. Mech. Eng. 131: 191 (1996).

    Article  Google Scholar 

  33. C.W. Lan, Comparison of flow and segregation control by ampoule rotation and magnetic fields for vertical Bridgman crystal growth, J. Chin. Inst. Chem. Engrs, to appear.

    Google Scholar 

  34. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover, New York (1961).

    Google Scholar 

  35. H.P. Greenspan, The Theory of Rotating Fluids, Cambridge Univ. Press., Cambridge, UK (1969).

    Google Scholar 

  36. W. R. Wilcox, R. Friedenberg, and N. Back, Zone melting of organic compounds, Chem. Rev. 64: 187 (1964).

    Article  CAS  Google Scholar 

  37. C.W. Lan, Three-dimensional simulation of heat flow and interfaces in floating-zone crystal growth, J. Crystal Growth, in preparation.

    Google Scholar 

  38. C.W. Lan, Heat Transfer, Fluid Flow, and Interface Shapes in Floating-Zone Crystal Growth, PhD Dissertation, University of Wisconsin at Madison (1991).

    Google Scholar 

  39. C.W. Lan and S. Kou, Effects of rotation on heat transfer, fluid flow, and interfaces in normal gravity floating-zone crystal growth, J. Crystal Growth 114: 517 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lan, C.W. (2001). Effects of Rotation on Transport Processes During Crystal Growth By Solidification. In: Regel, L.L., Wilcox, W.R. (eds) Processing by Centrifugation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0687-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0687-4_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5195-5

  • Online ISBN: 978-1-4615-0687-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics