Skip to main content

Influence of Centrifugation on Diamond Film Deposition By Chemical Vapor Transport

  • Chapter
Processing by Centrifugation

Abstract

Chemical vapor deposition (CVD) of diamond films at high gravity was first suggested by Regel in 1990. However, the prior methods for diamond CVD were unsuitable for mounting on a large centrifuge. All required a flowing gas system for hydrogen-hydrocarbon mixtures at low pressure, with the attendant gas cylinders, flow controllers, vacuum pump, and waste gas disposal system. Many required a plasma generator. In 1996, we described a new closed Chemical Vapor Transport (CVT) reactor that could deposit diamond films without continual addition of gas.1 Hot graphite is used as a carbon source in the presence of hydrogen at low pressure, without a metal filament or plasma. Under proper conditions, this technique has provided diamond growth rates an order of magnitude larger than the ~1 µm/h typical for diamond CVD processes. High-quality polycrystalline diamond was deposited on a wide variety of substrates, including silicon, glass, copper, molybdenum, gold, graphite and carbon felt.2 The deposits were not removed by the “scotch-tape test.” Patterned selective deposition was achieved on a copper pattern on oxidized silicon.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.L. Regel, Y. Takagi and W.R. Wilcox, Centrifugal Diamond Film Processing, in: Centrifugal Materials Processing, L.L. Regel and W.R. Wilcox, eds., Plenum, NY (1997) pp 221-228.

    Chapter  Google Scholar 

  2. L.L. Regel and W.R. Wilcox, Deposition of diamond on graphite and carbon felt from graphite heated in hydrogen at low pressure, J. Mat. Res. Lettr. 19: 455-457 (2000) plus cover photo.

    CAS  Google Scholar 

  3. L.L. Regel and W.R. Wilcox, Selective patterned deposition of diamond using a new technique, J. Mat. Res. Lettr. 18: 427-430 (1999) plus cover photo.

    CAS  Google Scholar 

  4. R. Derebail, W.A. Arnold, G.J. Rosen, W.R. Wilcox, and L.L. Regel, HIRB - The centrifuge facility at Clarkson, in: Materials Processing at High Gravity, L.L. Regel and W.R. Wilcox, eds., Plenum Press, New York (1994) pp 203-212.

    Google Scholar 

  5. B. Lersmacher, H. Lydtin, W.F. Knippenberg, and A.W. Moore, Thermodynamische Betrachtungen zur Kohlensoffabscheidung bei der Pyrolyse Gasförmiger Kohlenstoffverbindungen, Carbon 5: 205-217 (1967).

    Article  CAS  Google Scholar 

  6. R.E. Duff and S.H. Bauer, Equilibrium composition of the C/H system at elevated temperatures, J. Chem. Phys. 36: 1754-1767 (1962).

    Article  Google Scholar 

  7. R.F. Baddour and J.L. Blanchet, Reactions of carbon vapor with hydrogen and with methane in a high intensity arc, I&EC Proc. Des. Dev. 3: 258-265 (1964).

    Article  CAS  Google Scholar 

  8. P. John, I.C. Drummond, D.K. Milne, M.G. Jubber, and J.I.B. Wilcox, Fundamental limits to growth rates in a methane-hydrogen microwave plasma, Diamond and Related Materials 3: 56-60 (1993).

    Article  Google Scholar 

  9. 9. M.W. Chase, Jr., et al., editors, JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data vol. 14, Supplement 1, Part 2 (1985) p. 1211.

    Google Scholar 

  10. R.A. Krakowski and D.R. Olander, Survey of the literature on the carbon-hydrogen system, Lawrence Radiation Laboratory, UCRL-19149 (1970).

    Google Scholar 

  11. B. Balooch and D.R. Olander, Reactions of modulated molecular beams with pyrolytic graphite. III. Hydrogen, J. Chem. Phys. 63: 4722-4786 (1975).

    Article  Google Scholar 

  12. H.F. Winters, J. Seki, R.R. Rye, and M.E. Coltrin, Interaction of hydrogen, methane, ethylene, and cyclopentane with hot tungsten: Implications for the growth of diamond films, J. Appl. Phys. 76: 1228-1243 (1994).

    Article  CAS  Google Scholar 

  13. A. de Koranyi, N.D. Parkyns, and SJ. Peacock, The reactivity of graphite towards hydrogen, in: Proceedings of the Fifth London International Carbon and Graphite Conference, Society of Chemical Industry, London (1978) pp 139-149.

    Google Scholar 

  14. Z. Szabó, The examination of a system carbon and hydrogen in the temperature range 1100-2600oC, J. Am. Chem. Soc. 72: 3497-3502 (1950).

    Article  Google Scholar 

  15. SJ. Steck, G. A. Pressley, Jr., S.S. Lin, and F.E. Stafford, Mass-spectrometric investigation of the reaction of hydrogen with graphite at 1900o-2400oK, J. Chem. Phys. 50: 3196-3207 (1969).

    Article  CAS  Google Scholar 

  16. E.A. Gulbransen, K.F. Andrew, and F.A. Brassart, The reaction of hydrogen with graphite at 1200o to 1650oC, J. Electrochem. Soc. 112: 49-52 (1965).

    Article  CAS  Google Scholar 

  17. J.T. Clarke and B.R. Fox, Reaction of graphite filaments with hydrogen above 2000oK, J. Chem. Phys. 46: 827-836 (1967).

    Article  CAS  Google Scholar 

  18. W.L. Hsu, Chemical erosion of graphite by hydrogen impact: A summary of the database relevant to diamond film growth, J Vac. Sci. Technol. A6: 1803-1811 (1988).

    Google Scholar 

  19. Z. Pan, Mechanistic studies of uncatalyzed and catalyzed carbon gasification reactions, PhD Dissertation, State University of New York at Buffalo (1996).

    Google Scholar 

  20. R.K. Gould, Kinetics of CH4 formation from the reaction of H with graphite, J. Chem. Phys. 63: 1825-1836(1975).

    Article  CAS  Google Scholar 

  21. R.R. Rye, Reaction of thermal atomic hydrogen with carbon, Surf. Sci. 69: 653-667 (1977).

    Article  CAS  Google Scholar 

  22. 22. FLUENT (v4.51), Fluid Flow Modeling, Fluent Inc., Centerra Resource Park, 10 Cavendish Court, Lebanon, NH 03766, USA.

    Google Scholar 

  23. 23. P.V. Skudarnov, L.L. Regel, W.R. Wilcox, and G. Ahmadi, Numerical modeling and flow visualization in the gradient freeze configuration during centrifugation, present volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Regel, L.L., Wilcox, W.R. (2001). Influence of Centrifugation on Diamond Film Deposition By Chemical Vapor Transport. In: Regel, L.L., Wilcox, W.R. (eds) Processing by Centrifugation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0687-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0687-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5195-5

  • Online ISBN: 978-1-4615-0687-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics