The molecular specificity of IgG-Fc interactions with Fcγ receptors

  • Yusuke Mimura
  • Rodolfo Ghirlando
  • Peter Sondermann
  • John Lund
  • Roy Jefferis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 495)


The molecular specificity and mechanisms for the interaction of immunoglobulins with Fc binding ligands has been a subject of intensive investigation for many years. Significant information has been gained for human IgG-Fc from x-ray crystallographic analysis of IgG-Fc and IgGFc/ligand complexes. The crystal complexes of IgG-Fc with FcRn, SpA, SpG and rheumatoid factor autoantibody ligands revealed binding sites at the CH2/CH3 interface and an IgG-Fc:ligand stoichiometry of 1:2; reflecting the two fold symmetry of the IgG molecule [1]. For FcγR and C 1 q monomeric IgG must necessarily be functionally monovalent since IgG, FcγR bearing cells and Cl co-exist in the blood, in the absence of activation and the consequent inflammatory reactions.


Molecular Specificity Effector Ligand Ligand Stoichiometry Influence Protein Structure Effector Function Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IgG-Fc mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Jefferis R., Lund J. and Pound JD. 1998. Immunol.Rev. 1998,163:59–76.CrossRefGoogle Scholar
  2. 2.
    Crystal structure of the human leucocyte Fc receptor, FcγRIIa. Maxwell K., Powell M., Hogarth M. et al. Nature Structural Biology, 1999, 6:437–442.PubMedCrossRefGoogle Scholar
  3. 3.
    Crystal structure of the soluble form of the human FcγgRIIb: a new member of the Ig superfamily at 1.7A resolution. Sondermann P., Huber R., Jacob U. The EMBO J. 1999, 18:1095–1103.CrossRefGoogle Scholar
  4. 4.
    Structural basis of the interaction between IgG and Fcγ receptors. Kato K., SautesFridman C. et al. J.Mol.Biol. 2000, 295:213–224.PubMedCrossRefGoogle Scholar
  5. 5.
    The 3.2-A Crystal Structure of the Human IgG 1 Fc Fragment—FcγRIII Complex. Sondermann P.; Huber R.; Oosthuizen, V.; Jacob U. Nature, 2000, 406:267–273.PubMedCrossRefGoogle Scholar
  6. 6.
    Structure of the Fc fragment of human IgE bound to its high-affinity receptor FcεRI. Garman S., Wurzburg B., Tarchevskaya S., Kinet J-P., Jardetzsky T. Nature 2000, 406:359–266.CrossRefGoogle Scholar
  7. 7.
    The influence of glycosylation on the thermal stability and effector function expression of human IgGI-Fc. Mimura Y., Church S., Ghirlando R., Dong S., Goodall M., Lund J., Jefferis R. Molecular Immunology. In press.Google Scholar
  8. 8.
    Expression and characterisation of truncated glycoforms of humanised L243 IgG I: architectural features can influence synthesis of its oligosaccharide chains and affect superoxide production triggered through human FcγRI. Lund J., Takahashi N., Popplewell A., Goodall M., Pound J., Tyler R., King D and Jefferis R. Eur.J.Biochemistry. 2000; 267:7246–7257.CrossRefGoogle Scholar
  9. 9.
    Solid-phase synthesis and cyclization of a large branched peptide from IgG-Fc with affinity for FcγRI. Sheridan J., Hayes G., Austen B. J.Peptide Sci., 1999, 5:555–562.CrossRefGoogle Scholar
  10. 10.
    Prevention of systemic lupus erythematosus by administration of an immunoglobulin binding peptide. Marino M., Ruvo M., de Falco S., Fassina G. Nature biotechnology, 2000, 18:735–739.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Yusuke Mimura
    • 1
  • Rodolfo Ghirlando
    • 2
  • Peter Sondermann
    • 3
  • John Lund
    • 1
  • Roy Jefferis
    • 1
  1. 1.Division of Immunity and InfectionThe Medical SchoolBirminghamUK
  2. 2.LMB-NIDDK-NIHBethesdaUSA
  3. 3.Max-Planck InstituteMartinsriedGermany

Personalised recommendations