Advertisement

Exosomes in cancer immunotherapy: preclinical data

  • F. Andre
  • M. Andersen
  • J. Wolfers
  • A. Lozier
  • G. Raposo
  • V. Serra
  • C. Ruegg
  • C. Flament
  • E. Angevin
  • S. Amigorena
  • L. Zitvogel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 495)

Abstract

Tumor cells present tumor antigens, but they are not immunogenic. To circumvent this lack of immunogenicity and induce expansion of specific cytotoxic T lymphocytes (CTL), some investigators have proposed to use dendritic cells in cancer immunotherapy. Dendritic cells (DC) are unique professional antigen presenting cells that are able to uptake and cross-present class I and class II restricted antigens to CD8+ and CD4+ T lymphocytes. Importantly, mature DC are also capable of priming naive T lymphocytes through expression of costimulatories molecules (CD80, CD86). Proof of principle of the role of dendritic cells in clinical trials has been reported in normal volunteers by Dhodapkar (1). Indeed, DC pulsed with antigens, but not DC alone, nor peptides alone, were able to induce primary and to boost secondary antigen specific T cell based immune response. Some clinical trials using this strategy for metastatic cancer treatment have been reported. Using ex-vivo propagated DC, pulsed with either peptides or tumor cell lysates, Nestlé et al (2) reported 5 clinical responses in 16 melanoma Patients. Using fusion between DC and tumor cells, Kugler et al(3) reported 4 comliete responses in 17 metastatis renal cancer patients.

Keywords

Dendritic Cell Cancer Immunotherapy Antitumor Immune Response Tumor Rejection Antigen Dendritic Cell Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dhodapkar MV, Steinman RM, Sapp M, Desai H, Fossella C, Krasovsky J, Donahoe SM, Dunbar PR, Cerundolo V, Nixon DF, Bhardwaj N, 2000, Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells.JClin Invest10: 19–14Google Scholar
  2. 2.
    Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D, 1998, Vaccination of melanoma patients with peptides-or tumor lysate-pulsed dendritic cells.Nat Med4: 328–32PubMedCrossRefGoogle Scholar
  3. 3.
    Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Muller CA, Becker V, Gross AJ, Hemmerlein B, Kanz L, Muller GA, Ringert RH, 2000, Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids.Nat Med6: 332–6PubMedCrossRefGoogle Scholar
  4. 4.
    Albert, M.L., Sauter, B. and Bhardwaj, N., 1998, Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLsNature392. 86–89PubMedCrossRefGoogle Scholar
  5. 5.
    Regnault, A., Lankar, D., Lacabanne, V., Rodriguez, A., Thery, C., Rescigno, M., Saito, T., Verbeek, S., Bonnerot, C., Ricciardi-Castagnoli, P. and Amigorena, S., 1999, Fc gamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalizationJ. Exp. Med.189. 371–380PubMedCrossRefGoogle Scholar
  6. 6.
    Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L. and Turbide, C., 1987, Vesicle formation during reticulocyte maturationJ. Biol. Chem.262. 9412–9420PubMedGoogle Scholar
  7. 7.
    Raposo, G., Nijman, H. W., Stoorvogel, W., Leijendekker, R., Harding, C. V., Melief, C. J. M. and Geuze, H. J., 1996, B lymphocytes secrete antigen-presenting vesiclesJ Exp. Med.183. 1161–1172PubMedCrossRefGoogle Scholar
  8. 8.
    Zitvogel, L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S, 1998, Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes.Nat. Med.4, 594–610PubMedCrossRefGoogle Scholar
  9. 9.
    Thery, C., Regnault, A., Garin, J., Wolfers, J., Zitvogel, L., Ricciardi-Castagnoli, P., Raposo, G. and Amigorena, S., 1999, Molecular characterization of dendritic cell-derived exosomes: selective accumulation of the heat shock protein hsc73J. Cell. Biol.147. 599–610PubMedCrossRefGoogle Scholar
  10. 10.
    Srivastava, P. K., Menoret, A., Basu, S., Binder, R. J. and McQuade, K. L., 1998, Heat shock proteins come of age: primitive functions acquire new roles in an adaptive worldImmunity.8. 657–665PubMedCrossRefGoogle Scholar
  11. 11.
    Andersen MH, Graversen H, Fedosov SN, Petersen TE, Rasmussen JT, 2000, Functional analysis of two cellular binding domains of bovine lactadherin.Biochemistry39: 62006Google Scholar
  12. 12.
    Wolfers J, Andre F, Ruegg C, D. Shu, V. Serra, O. Dhellin, G. Raposo, C. Thery, S. Amigorena, J. Crouzet, T. Tursz and L. Zitvogel, 2000, Dendritic cell-derived exosomes are effective cancer vaccine: preclinical data towards a clinical trial.Proc Am Ass Cancer ResA5556Google Scholar
  13. 13.
    Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L, 2001, Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming.Nat Medin pressGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • F. Andre
    • 1
  • M. Andersen
    • 1
  • J. Wolfers
    • 1
  • A. Lozier
    • 1
  • G. Raposo
    • 2
  • V. Serra
    • 4
  • C. Ruegg
    • 4
  • C. Flament
    • 1
  • E. Angevin
    • 1
  • S. Amigorena
    • 3
  • L. Zitvogel
    • 1
  1. 1.Immunology UnitInstitut Gustave RoussyVillejuifFrance
  2. 2.UMR 144 CNRS Institut CurieParisFrance
  3. 3.Unité INSERM 0520Institut CurieParisFrance
  4. 4.APCells CompanyMenlow ParkCAUSA

Personalised recommendations