Allele specific regulation of cytokine genes: Monoallelic expression of the IL-lA gene

  • Cornelis L. Verweij
  • Jean-Pierre Bayley
  • Aleida Bakker
  • Eric L. Kaijzel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 495)


The host immune response strongly controls the susceptibility and outcome of inflammatory and infectious diseases in humans. Cytokines play an important role in this response as crucial intercellular signaling molecules that are responsible for multidirectional communication among immune and inflammatory cells engaged in host defense. They exert their effects by binding to high-affinity receptors expressed on target cells thereby inducing biochemical signals within these cells which profoundly change their behaviour. It has become clear that cytokines not only play important roles in tissue homeostasis but also in the pathogenesis of many immune related disorders. A large body of evidence indicated that the cytokine profile, examplified by the balance between inflammatory and anti-inflammatory activities, is a determining factor in the progress of the immune response and the maintenance of tissue homeostasis and might provide an explanation for interindividual differences in the host immune response. A critical question to be answered is which molecular mechanism underlies the imbalance of pro-and anti-inflammatory activity in immune related disease. Clinically useful information should come from understanding the molecular regulatory steps underlying the imbalance in the cytokine profile that would allow the identification of people who display an imbalance in their cytokine profile enabling clinicians to predict outcomes and to tailor treatment.


Tumor Necrosis Factor Cerebral Malaria Cytokine Gene Common Variable Immune Deficiency Tumor Necrosis Factor Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Westendorp, R.G.J., Langermans, J.A.M., Huizinga, T.W.J., Elouali, A.H., Verweij, C.L., Boomsma, D.I., Vandenbrouke, J.P., 1997, Genetic influence on cytokine production and fatal meningococcal disease. Lancet 349: 170–173.PubMedCrossRefGoogle Scholar
  2. 2.
    Jacob, C.O., Fronek, Z., Lewis, G.D., Koo, M., Hansen, J.A., McDevitt, H.O., 1990, Heritable major histocompatibility complex class II-associated differences in production of TNFa: relevance to genetic predisposition to systemic lupus erythematosus. Proc Natl Acad Sci USA 87: 1233–1237.PubMedCrossRefGoogle Scholar
  3. 3.
    Pociot, F., Briant, L., Jongeneel, C.V., Molvig, J., Worsaae, H., Abbal, M., Thomson, M., Nerup, J., Cambon-Thomsen, A., 1993, Association of TNF and class II MHC alleles with the secretion of TNF-alpha and TNF-beta by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus. Eur J Immunol 23: 224–232PubMedCrossRefGoogle Scholar
  4. 4.
    Bendtzen, K., Morling, N., Fonsgaard, A., Svenson, M., Jakobsen, B., Odum, A., Soejgaard, A. 1988, Association between HLA-DR2 and production of tumor necrosis factor a and interleukin 1 by mononuclear cells activated by lipopolysaccharide. Scand J Immunol 28: 599–606.PubMedCrossRefGoogle Scholar
  5. 5.
    Fernandes, D.M., Baldwin, C.L., 1995, Interleukin 10 downregulates protective immunity toBrucella abortus.Infect Immun 63:1130–1133PubMedGoogle Scholar
  6. 6.
    Gazznelli, R.T., Wysocka, M., Hieny, S. et al., 1996, In the absence of endogenous IL-10, mice acutely infected withToxoplasma gondiisuccumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFNy, and TNFa. J Immunol 157: 798–805Google Scholar
  7. 7.
    Alexander, H.R., Sheppard, B.C., Jensen, J.C., et al., 1991, Treatment with recombinat human tumor necrosis factor alpha protects rats against lethality, hypotension, and hypothermia of gram-negative sepsis. J Clin Invest 88: 34–39PubMedCrossRefGoogle Scholar
  8. 8.
    Rothe, J., Lesslauer, W., Lotscher, H., et al., 1993, Mice lacking the tumour necrosis factor receptor I are resistant to TNF-mediated toxicity but highly susceptible to infection byListeria monocytogenes.Nature 364: 798–802PubMedCrossRefGoogle Scholar
  9. 9.
    Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K., Muller, W., 1993, Interleukin-l0deficient mice develop chronic enterocolitis. Cell 75:263–269PubMedCrossRefGoogle Scholar
  10. 10.
    McGuire, W., Hill, A.V.S., Allsopp, C.E.M., Greenwood, B.M., Kwiatkowski, D., 1994, Variation in the TNFa promotor region associated with susceptibility to cerebral malaria. Nature 371: 508–512PubMedCrossRefGoogle Scholar
  11. 11.
    Hohler, T., et al., 1997, A TNF-alpha promoter polymorphism is associated with juvenile onset psoriasis and psoriatic arthritis. J Invest Dermatol 109:562–565PubMedCrossRefGoogle Scholar
  12. 12.
    Mullighan, C.G., Fanning, G.C., Chapel, H.M., Welsh, K.I., 1997, TNF and lymphotoxinalpha polymorphisms associated with common variable immunodeficiency: role in the pathogenesis of granulomatous disease. J Immunol 159:6236–6241PubMedGoogle Scholar
  13. 13.
    van Krugten, M.V., Huizinga, T.W.J., Kaijzel, E.L., Drossears-Bakker, K.W., van de Linde, P., Zanelli, E., Hazes, J.M.W., Zwinderman, A.H., Breedveld, F.C., Verweij, C.L.,1999, Association of the TNF +489 polymorphism with susceptibility and radiographic damage in rheumatoid arthritis patients. Genes Immunity 1: 1–6CrossRefGoogle Scholar
  14. 14.
    Kaijzel, E.L., van Krugten, M.V., Brinkman, B.M.N., Huizinga, T.W.J., Breedveld, F.C., and Verweij, C.L. 1998, Functional analysis of a human tumor necrosis factor alpha promoter polymorphism related to joint damage in rheumatoid arthritis. Molec. Med. 4: 724–733Google Scholar
  15. 15.
    Brinkman, B.M.N., Zuijdgeest, D., Kaijzel, E.L., Breedveld, F.C., Verweij, C.L., 1996, Relevance of the tumor necrosis factor alpha (TNF alpha) - 308 promoter polymorphism in TNF alpha gene regulation. J Inflamm 46: 32–41.Google Scholar
  16. 16.
    Stuber, F., Udalova, I.A., Book, M., Drutskaya, L.N., Kuprash, D.V., Turetskaya, R.L., Schade, F.U., Nedospasov, S.A.,1996, -308 tumor necrosis factor (TNF) polymorphism is not associated with survival in severe sepsis and is unrelated to lipopolysaccharide inducibility of the human TNF promoter. J Inflamm 46: 42–50.Google Scholar
  17. 17.
    Wilson, A.G., Symons, J.A., McDowell, T.L., McDevitt, H.O., Duff, G.W., 1997, Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA 94: 3195–3199.PubMedCrossRefGoogle Scholar
  18. 18.
    Kroeger, K.M., Carville, K.S., Abraham, L.J., 1997, The —308 tumor necrosis factor promoter polymorphism effects transcription. Mol Immunol 134:391–399CrossRefGoogle Scholar
  19. 19.
    Brinkman, B.M.N., Kaijzel, E.L., Huizinga, T.W.J., Giphart, M.J., Breedveld, F.C., Verweij CL., 1995, Detection of a C-insertion polymorphism within the human tumor necrosis factor alpha (TNFA) gene. Hum Genet 96: 493.PubMedCrossRefGoogle Scholar
  20. 20.
    D’Alfonso, S., Momigliano, R.P., 1996, An intragenic polymorphism in the human tumor necrosis factor alpha (TNFA) chain-encoding gene. Immunogenetics 44: 321–322PubMedCrossRefGoogle Scholar
  21. 21.
    Brinkman, B.M.N., Huizinga, T.W.J., Breedveld, F.C., and Verweij, C.L. 1996, Allele-specific quantification of TNFA transcripts in rheumatoid arthritis. Hum. Genet. 97: 813818Google Scholar
  22. 22.
    Kaijzel, E.L., Bayley, J.P., van Krugten, M.V., Smith, L., van de Linde P., Bakker, A.L., Huizinga, T.W.J., and Verweij, C.L. 2001, Allele specific quantification of tumor necrosis factor (TNF) transcription and the role of promoter polymorphisms in rheumatoid arthritis and healthy individuals. Genes Immun. in pressGoogle Scholar
  23. 23.
    Hollander, G., Zuklys, S., Morel, C., Mizoguchi, E., Mobisson, K., Simpson, S., Terhorst, C., Wishart, W., Golan, D.E., Bhan, A.K., and Burakoff S.J., 1998, Monoallelic expression of the interleukin-2 locus. Science 279: 2118–2121PubMedCrossRefGoogle Scholar
  24. 24.
    Bix, M., and Locksley, R., 1998, Science 281: 1352–1354Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Cornelis L. Verweij
    • 1
  • Jean-Pierre Bayley
    • 1
  • Aleida Bakker
    • 1
  • Eric L. Kaijzel
    • 1
  1. 1.Department of RheumatologyLeiden University Medical CenterNetherlands

Personalised recommendations