Advertisement

A central role for heat shock proteins in host deficiency

  • Pramod K. Srivastava
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 495)

Abstract

We have suggested previously that heat shock proteins play a central role in host defense. Specifically, we posit that the release of HSPs from cells is the primary event for initiation of the innate and adaptive immunological cascades.

Keywords

Heat Shock Protein Transporter Associate With Antigen Processing Lymphocytic Choriomeningitis Tumor Antigen Peptide Stress Protein HSP70 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D., Faath, S., Rammensee, H., and Schild, H., 1995, Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med 182, 3:885–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Arnold, D., Faath, S., Rammensee, H., and Schild, H., 1997, Influences of transporter associated with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96. J Exp Med 186, 3:461–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Basu, S., Binder, R., Suto, R., Anderson, K., and Srivastava, P.K., 2000, Mammalian heat shock proteins signal cell death through activation of the NFkB pathway in antigen presenting cells. FASEB J Abstracts 14(6):A945.Google Scholar
  4. 4.
    Basu, S., Binder, R.J., Srivastava, P.K., 2001, CD9I is a common receptor for heat shock proteins gp96, hsp90, hsp70 and calreticulin, Immunity, 14, 1–20.CrossRefGoogle Scholar
  5. 5.
    Blachere, N., Udono, H., Janetzki, S., Li, Z., Heike, M., and Srivastava, P.K., 1993, Heat shock protein vaccines against cancer. J Immunotherapy 14, 4:352.CrossRefGoogle Scholar
  6. 6.
    Blachere, N.E., Li, Z., Chandawarkar, R., Suto, R., Jaikaria, N., Basu, S., Udono, H. and Srivastava, P.K., 1997, Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186, 8:1315–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Breloer, M., Marti, T., Fleischer, B., and von Bonin, A., 1998, Isolation of processed, H2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur. J. Immunol. 28:1016–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Charaka, 500 B.C, published 1957, Charaka Samhita, Motilal Banarasi Das Publishers, Allahabad.Google Scholar
  9. 9.
    Ciupitu, A.M., Petersson, M.O.D.C., Williams, K., Jindal, S., Kiessling, R., and Welsh, R., 1998, Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. J. Exp. Med. 187,5 :685–91.CrossRefGoogle Scholar
  10. 10.
    Castellino, F., Boucher, P., Eichelberg, K., Mayhew, M., Rothman, J., Houghton, A., and Germain, R., 2000, Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J. Exp. Med 191(11): in press.CrossRefGoogle Scholar
  11. 11.
    Gallucci, S., Lolkema, M., and Matzinger, P., 1999, Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5(11): 1249–55.Google Scholar
  12. 12.
    Hanson, D. and Murphy, P. (1984). Demonstration of interleukin-1 activity in apparently homogenous specimens of the pl 5 form of the rabbit endogenous pyrogen. Infect. Immun. 45: 483–90.Google Scholar
  13. 13.
    Heikema, A., Agsteribbe, E., Wilschut, J., and Huckriede, A., 1997, Generation of heat shock protein-based vaccines by intracellular loading of gp96 with antigenic peptides. Immunol. Lett. 57, 1–3:69–74.Google Scholar
  14. 14.
    Ishii, T., Udono, H., Yamano, T. Ohtah, Uenaka, A., Ono, T., Hizuta, A., Tanaka, N., Srivastava, P.K. and Nakayama, E., 1999, Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat-shock proteins hsp70, hsp90, and gp96. J. Immunol. 162(3):1303–9.PubMedGoogle Scholar
  15. I5.
    Janetzki S, Polla D, Rosenhauer V, Lochs H, Srivastava PK., 2000, Immunization of cancer patients with autologous cancer-derived heat shock protein gp96: A pilot study. Intl. Journal of Cancer, 88, 232–238.Google Scholar
  16. 16.
    Lindquist, S. and Craig, E., 1988, The heat-shock proteins. Annu. Rev. Genet. 22: 631–77.CrossRefGoogle Scholar
  17. 17.
    Luheshi, G. and Rothwell, N., 1996, Cytokines and fever. Int. Arch. Allergy Immunol. 109:301.PubMedCrossRefGoogle Scholar
  18. 18.
    Dinarello, C., Cannon, J., and Wolff, S., 1988, New concepts in the pathogenesis of fever. Rev. Infect. Dis. 10(1):168–89.PubMedCrossRefGoogle Scholar
  19. 19.
    Masso-Welch P., Black J., Erikson, J., and Repasky, E., 1999, Polarized expression of immunoglobulin, spectrin, and protein kinase C beta II occurs in B cells from normal BALB/c autoimmune 1pr, and anti-ssDNA transgenic, tolerant mice. J. Leukoc. Biol. 66(4):617–24.PubMedGoogle Scholar
  20. 20.
    Medzhitov, R. and Janeway, C., Jr., 1997, Innate immunity: the virtues of a nonclonal system of recognition. Cell. 91:295–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Nieland, T., Tan, M., Monne-van Muijen, M., Koning, F., Kruisbeek, A. and van Bleek, G., 1996, Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci U S A 93, 12:6135–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Old, L.J. 1985, Tumor necrosis factor (TNF) Science. 230:630–2.Google Scholar
  23. 23.
    Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–73.CrossRefGoogle Scholar
  24. 24.
    Saper, C. and Breder, C., 1994, The neurologic basis of fever. N. Engl. J. Med. 330: 1889–25.Google Scholar
  25. 25.
    Sauter B., Albert M., Francisco L., Larsson, M., Somersan, S., and Bhardwaj, N., 2000, Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191(3):423–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Srivastava, P.K., Studies on cell surfaces during normal and abnormal growth: purification of a tumor-associated antigen and a tumor-rejection-antigen from a rat hepatoma, 1982, Doctoral Thesis at the Osmania University, Hyberabad.Google Scholar
  27. 27.
    Srivastava, P.K., Ménoret, A., Basu, S., Binder, R., McQuade, K., 1998, Heat shock proteins come of age: Primitive functions acquire new roles in an adaptive world. Immunity (8): 657–665.PubMedCrossRefGoogle Scholar
  28. 28.
    Srivastava, P.K. and Heike, M., 1991, Tumor-specific immunogenicity of stress-induced proteins: Convergence of two evolutionary pathways of antigen presentation? Semin. Immunol. 3, 57–64.Google Scholar
  29. 29.
    Srivastava, P.K. and Maki, R., 1991, Stress-induced proteins in immune response to cancer Curr. Top. Microbiol. Immunol. 167, 109–123.PubMedCrossRefGoogle Scholar
  30. 30.
    Srivastava, P.K., Udono, H., Blachere, N., and Li, Z., 1994, Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics. 39:93–98.Google Scholar
  31. 31.
    Suto, R. and Srivastava, P.K., 1995, A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Pramod K. Srivastava
    • 1
  1. 1.University of Connecticut School of MedicineUSA

Personalised recommendations