Role of tapasin in MHC class I antigen presentation in vivo

  • Natalio Garbi
  • Pamela Tan
  • Frank Momburg
  • Günter J. Hämmerling
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 495)


Antigen presentation on MHC class I molecules is a key event for CD8+T cell development as well as initiation and maintenance of immunological responses against intracellular microorganisms. For a cellular immune response to be initiated, peptides derived from invading pathogens need to be generated, loaded onto MHC class I molecules in the endoplasmic reticulum (ER) and displayed at the cell surface for CD8+ T cell recognition1,2. The generation of antigenic peptides is usually achieved by proteolytic degradation in the cytosol by the proteasome. Peptides are then selectively transported into the ER lumen by the transporter associated with antigen presentation (TAP) and loaded onto “peptide-receptive” class I molecules in a process assisted by several molecular chaperones and accessory proteins.


Antigen Presentation Peptide Binding Endoplasmic Reticulum Lumen Surface Class Antigen Presentation Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cresswell, P., Bangia, N., Dick, T. and Diedrich, G., 1999, The nature of the MHC class I peptide loading complex. Immunol. Rev. 172: 21–28.Google Scholar
  2. 2.
    Solheim, J. C., 1999, Class I MHC molecules: assembly and antigen presentation. Immunol. Rev. 172: 11–19.Google Scholar
  3. 3.
    Lindquist, J. A., Jensen, O. N., Mann, M. and Hämmerling, G. J., 1998, ER-60, a chaperone with thiol-dependent reductase activity involved in MHC class I assembly. Embo J. 17: 2186–2195.PubMedCrossRefGoogle Scholar
  4. 4.
    Vogt, B. A., Hämmerling, G. J. and Kropshofer, H, 1998, HLA-DM and HLA-DO: A chaperone and its modulator inflzuencing the peptide repertoire seen by T cells. The immunologist 6/5:186–193.Google Scholar
  5. 5.
    Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T. and Cresswell, P., 1996, Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5: 103–114.PubMedCrossRefGoogle Scholar
  6. 6.
    Schoenhals, G. J., Krishna, R. M., Grandea, A. G. 3rd, Spies, T., Peterson, P. A., Yang, Y. and Fruh, K., 1999, Retention of empty MHC class I molecules by tapasin is essential to reconstitute antigen presentation in invertebrate cells. Embo J. 18: 743–753.PubMedCrossRefGoogle Scholar
  7. 7.
    Suh, W. K., Derby, M. A., Cohen-Doyle, M. F., Schoenhals, G. J., Fruh, K., Berzofsky, J. A. and Williams, D. B., 1999, Interaction of murine MHC class I molecules with tapasin and TAP enhances peptide loading and involves the heavy chain alpha3 domain. J. Immunol. 162: 1530–1540.PubMedGoogle Scholar
  8. 8.
    Li, S., Paulsson, K. M., Chen, S., Sjogren, H. O. and Wang, P., 2000, Tapasin is required for efficient peptide binding to transporter associated with antigen processing. J. Biol. Chem. 275: 1581–1586.PubMedCrossRefGoogle Scholar
  9. 9.
    Lehner, P. J., Surman, M. J. and Cresswell, P., 1998, Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line.220. Immunity 8: 221–231.PubMedCrossRefGoogle Scholar
  10. 10.
    Barnden, M. J., Purcell, A. W., Gorman, J. J. and McCluskey, J., 2000, Tapasin-Mediated Retention and Optimization of Peptide Ligands During the Assembly of Class I Molecules. J. Immunol 165: 322–330.PubMedGoogle Scholar
  11. 11.
    Purcell, A. W., Gorman, J. J., Garcia-Peydro, M., Paradela, A., Burrows, S. R., Talbo, G. H., Laham, N., Peh, C. A., Reynolds, E. C., Lopez De Castro,J. A.and McCluskey, J., 2001, Quantitative and Qualitative Influences of Tapasin on the Class I Peptide Repertoire. J. Immunol. 166: 1016–1027.PubMedGoogle Scholar
  12. 12.
    Garbi, N., Tan, P., Diehl, A. D., Chambers, B. J., Ljunggren, H.-G., Momburg, F. and Hammerling, G. J., 2000, Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nature Immunol. 1: 234–238.CrossRefGoogle Scholar
  13. 13.
    Zijlstra, M., Bix, M., Simister, N. E., Loring, J. M., Raulet, D. H. and Jaenisch, R., 1990, 132-microglobulin deficient mice lack CD4–8+ cytolytic T cells. Nature 344: 742–746.PubMedCrossRefGoogle Scholar
  14. 14.
    Van Kaer, L., Ashton Rickardt, P. G., Ploegh, H. L. and Tonegawa, S., 1992, TAPI mutant mice are deficient in antigen presentation, surface class I molecules, and CD4-8+T cells. Cell 71: 1205–1214.PubMedCrossRefGoogle Scholar
  15. 15.
    Grandea III, A. G., Golovina, T. N., Hamilton, S. E., Sriram, V., Spies, T., Brutkiewicz, R., Harty, J. T., Eisenlohr, L. C. and Van Kaer, L., 2000, Impaired assembly yet normal trafficking of MHC class I molecules in tapasin mutant mice. Immunity 13: 213–222.PubMedCrossRefGoogle Scholar
  16. 16.
    Glas, R., Ohlen, C., Hoglund, P. and Karre, K., 1994, The CD8+T cell repertoire in 132­microglobulin-deficient mice is biased towards reactivity against self-major histocompatibility class I. J. Exp. Med. 179: 661–672.PubMedCrossRefGoogle Scholar
  17. 17.
    Aldrich, C. J., Ljunggren, H. G., Van Kaer, L., Ashton Rickardt, P. G., Tonegawa, S. and Forman, J., 1994, Positive selection of self-and alloreactive CD8’ T cells in Tap-1 mutant mice. Proc. Natl. Acad. Sci. USA 91: 6525–6528.PubMedCrossRefGoogle Scholar
  18. 18.
    Ljunggren, H. G., Van Kaer, L., Ploegh, H. L. and Tonegawa, S., 1994, Altered natural killer cell repertoire in Tap-I mutant mice. Proc. Natl. Acad. Sci. USA 91: 6520–6524.PubMedCrossRefGoogle Scholar
  19. 19.
    Niedermann, G., Geier, E., Lucchiari-Hartz, M., Hitziger, N., Ramsperger, A. and Eichmann, K., 1999, The specificity of proteasomes: impact on MHC class I processing and presentation of antigens. Immunol. Rev. 172: 29–48.Google Scholar
  20. 20.
    Momburg, F. and Hammerling, G. J., 1998, Generation and TAP-mediated transport of peptides for major histocompatibility complex class I molecules. Adv. Immunol. 68: 191­256.PubMedGoogle Scholar
  21. 21.
    Rammensee, H. G., Falk, K. and Rotzschke, 0., 1993, Peptides naturally presented by MHC class I molecules. Annu. Rev. Immunol. 11: 213–44.CrossRefGoogle Scholar
  22. 22.
    Stoltze, L., Schirle, M., Schwarz, G., Schröter, C., Thompson, M. W., Hersh, L. B., Kalbacher, H., Stevanovic, S., H -G Rammensee, H.-G. and Schild, H., 2000, Two new proteases in the MHC class I processing pathway. Nature Immunol. 1: 413–418.CrossRefGoogle Scholar
  23. 23.
    Paz, P., Brouwenstijn, N., Perry, R. and Shastri, N., 1999, Discrete proteolytic intermediates in the MHC class I antigen processing pathway and MHC I-dependent peptide trimming in the ER. Immunity 11: 241–251.PubMedCrossRefGoogle Scholar
  24. 24.
    Kropshofer, H., Hämmerling, G. J. and Vogt, A. B., 1997, How HLA-DM edits the MHC class II peptide repertoire: survival of the fittest? Immunol. Today 18: 77–82.Google Scholar
  25. 25.
    Kropshofer, H., Arndt, S. O., Moldenhauer, G., Hämmerling, G. J. and Vogt, A. B., 1997, HLA-DM acts as a molecular chaperone and rescues empty HLA-DR molecules at lysosomal pH. Immunity 6: 293–302.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Natalio Garbi
    • 1
  • Pamela Tan
    • 1
  • Frank Momburg
    • 1
  • Günter J. Hämmerling
    • 1
  1. 1.Department of Molecular ImmunologyGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations