Mechanism of Antibiotic Resistance in Helicobacter pylori

  • Ge Wang
  • Diane E. Taylor
Part of the Infectious Agents and Pathogenesis book series (IAPA)

Abstract

Helicobacter pylon is an important human gastric pathogen, infecting over half of the world population and causing gastritis, ulcers and gastric cancer. Current standard therapy regimens for treating these diseases are multiple antibiotics in combination with proton pump inhibitors (PPIs). Antibiotics that are frequently included in triple therapy regimens are clarithromycin, metronidazole and amoxicillin. In addition to the lack of compliance of the patient with the treatment, emergence of antibiotic resistance has become an increasing problem leading to the therapy failure. In this chapter we will summarize currently available data concerning the mechanisms of antibiotic resistance in H. pylori.

Keywords

Bismuth Vancomycin Adenine Kanamycin Chloramphenicol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akada J. K., Shirai M., Fujii K., Okita K., and Nakazawa T., 1999, In vitro anti-Helicobacter pylori activities of new rifamycin derivatives, KRM1648 and KRM-1657. Antimicrob. Agents Chemother. 43:1072–1076.PubMedGoogle Scholar
  2. 2.
    Aim R. A., Ling L. S., Moir D. T., King B. L., Brown E. D., Doig P. C., Smith D. R., Noonan B., Guild B. C., dejonge B. L., Carmel G., Tummino P. J., Caruso A., Uria-Nickelsen M., Mills D. M., Ives C., Gibson R., Merberg D., Mills S. D. Jiang Q., Taylor D. E., Vovis G. F., and Trust T. J., 1999, Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180.CrossRefGoogle Scholar
  3. 3.
    Ando T., Israel D. A., Kusugami K., and Blaser M. J., 1999, HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori. J. Bacteriol. 181:5572–5580.PubMedGoogle Scholar
  4. 4.
    Cederbrant G., Kahlmeter G., and Ljungh A., 1992, A proposed mechanism for metronidazole resistance in Helicobacter pylori. J. Antimicrob. Chemother. 29:115–120.PubMedCrossRefGoogle Scholar
  5. 5.
    Chang K. C., Ho S. W., Yang J. C., and Wang J. T., 1997, Isolation of a genetic locus associated with metronidazole resistance in Helicobacter pylori. Biochem. Biophys. Res. Commun. 236:785–788.PubMedCrossRefGoogle Scholar
  6. 6.
    Debets-Ossenkopp Y. J., Brinkman A. B., Kuipers E. J., Vandenbroucke-Grauls C. M., Küsters J. G., 1998, Explaining the bias in the 23S rRNA gene mutations associated with clarithromycin resistance in clinical isolates of Helicobacter pylori. Antimicrob. Agents Chemother. 42:2749–2751.PubMedGoogle Scholar
  7. 7.
    Debets-Ossenkopp Y. J., Pot R. G., van Westerloo D. J., Goodwin A., Vandenbroucke-Grauls C. M., Berg D. E., Hoffman P. S., and Küsters J. G., 1999, Insertion of mini-IS605 and deletion of adjacent sequences in the nitroreductase (rdxA) gene cause metronidazole resistance in Helicobacter pylori NCTC11637. Antimicrob. Agents Chemother. 43:2657–2662.PubMedGoogle Scholar
  8. 8.
    Debets-Ossenkopp Y. J., Sparrius M., Küsters J. G., Kolkman J. J., Vandenbroucke-Grauls C. M., 1996, Mechanism of clarithromycin resistance in clinical isolates of Helicobacter pylori. FEMS Microbiol. Lett. 142:37–42.PubMedCrossRefGoogle Scholar
  9. 9.
    DeLoney C. R., and Schiller N. L., 2000, Characterization of an In vitro-selected amoxicillin-resistant strain of Helicobacter pylori. Antimicrob. Agents Chemother. 44:3368–3373.PubMedCrossRefGoogle Scholar
  10. 10.
    Dore M. P., Graham D. Y., and Sepulveda A. R., 1999a, Different penicillin-binding protein profiles in amoxicillin-resistant Helicobacter pylori. Helicobacter 4:154–61.CrossRefGoogle Scholar
  11. 11.
    Dore M. P., Osato M. S., Kwon D. H., Graham D. Y., and El-Zaatari F. A., 1998, Demonstration of unexpected antibiotic resistance of genotypically identical Helicobacter pylori isolates. Clin. Infect. Dis. 27:84–89.PubMedCrossRefGoogle Scholar
  12. 12.
    Dore M. P., Osato M. S., Realdi G., Mura I., Graham D. Y., and Sepulveda A. R., 1999b, Amoxycillin tolerance in Helicobacter pylori. J. Antimicrob. Chemother. 43:47–54.CrossRefGoogle Scholar
  13. 13.
    Goldman R. C., Zakula D., Flamm R., Beyer J., and Capobianco J., 1994, Tight binding of clarithromycin, its 14-(R)-hydroxy metabolite, and erythromycin to Helicobacter pylori ribosomes. Antimicrob. Agents Chemother. 38:1496–1500.PubMedCrossRefGoogle Scholar
  14. 14.
    Goodwin A., Kersulyte D., Sisson G., Veldhuyzen van Zanten S. J., Berg D. E., and Hoffman P. S., 1998, Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Mol. Microbiol. 28:383–393.PubMedCrossRefGoogle Scholar
  15. 15.
    Han S. R., Bhakdi S., Maeurer M. J., Schneider T., and Gehring S., 1999, Stable and unstable amoxicillin resistance in Helicobacter pylori: Should antibiotic resistance testing be performed prior to eradication therapy? J. Clin. Microbiol. 37:2740–2741.PubMedGoogle Scholar
  16. 16.
    Heep M., Beck D., Bayerdorffer E., and Lehn N., 1999, Rifampin and rifbutin resistance mechanism in Helicobacter pylori. Antimicrob. Agents Chemother. 43:1497–1499.PubMedGoogle Scholar
  17. 17.
    Hoffman P. S., 1999, Antibiotic resistance mechanisms of Helicobacter pylori. Can. J. Gastroenterol. 13:243–249.PubMedGoogle Scholar
  18. 18.
    Hofreuter D., Odenbreit S., Henke G., and Haas R., 1998, Natural competence for DNA transformation in Helicobacter pylon: identification and genetic characterization of the comB locus. Mol. Microbiol. 28:1027–1038.PubMedCrossRefGoogle Scholar
  19. 19.
    Israel D. A., Lou A. S., and Blaser M. J., 2000, Characteristics of Helicobacter pylori natural transformation. FEMS Microbiol. Lett. 186:275–280.PubMedCrossRefGoogle Scholar
  20. 20.
    Jenks P. J., Ferrero R. L., and Labigne A., 1999a, The role of the rdxA gene in the evolution of metronidazole resistance in Helicobacter pylori. J. Antimicrob. Chemother. 43:753–758.PubMedCrossRefGoogle Scholar
  21. 21.
    Jenks P. J., Labigne A., and Ferrero R. L., 1999b, Exposure to metronidazole in vivo readily induces resistance in Helicobacter pylori and reduces the efficacy of eradication therapy in mice. Antimicrob. Agents Chemother. 43:777–781.PubMedCrossRefGoogle Scholar
  22. 22.
    Jeong J. Y., and Berg D. E., 2000, Mouse-colonizing Helicobacter pylori SSI is unusually susceptible to metronidazole due to two complementary reductase activities. Antimicrob. Agents Chemother. 44:3127–3132.PubMedCrossRefGoogle Scholar
  23. 23.
    Jeong J. Y., Mukhopadhyay A. K., Dailidiene D., Wang Y., Velapatino B., Gilman R. H., Parkinson A. J., Nair G. B., Wong B. C., Lam S. K., Mistry R., Segal I., Yuan Y., Gao H., Alarcon T., Brea M. L., Ito Y., Kersulyte D., Lee H. K., Gong Y., Goodwin A., Hoffman P. S., and Berg D. E., 2000, Sequential inactivation of rdxA (HP0954) and frxA (HP0642) nitroreductase genes causes moderate and high-level metronidazole resistance in Helicobacter pylori. J. Bacteriol. 182:5082–5090.PubMedCrossRefGoogle Scholar
  24. 24.
    Küsters J. G., Schuijffel D. F., Gerrits M. M., van Zwet A. A., and Vandenbroucke-Grauls C. M. J. E., 1999, A single amino acid change in PBP-1A causes amoxicillin resistance in Helicobacter pylori. Gut 45(Suppl. III):A5.Google Scholar
  25. 25.
    Kwon D. H., El-Zaatari F. A., Kato M., Osato M. S., Reddy R., Yamaoka Y., and Graham D. Y., 2000a, Analysis of rdxA and involvement of additional genes encoding NAD(P)H flavin oxidore-ductase (FrxA) and ferredoxin-like protein (FdxB) in metronidazole resistance of Helicobacter pylori. Antimicrob. Agents Chemother. 44:2133–2142.PubMedCrossRefGoogle Scholar
  26. 26.
    Kwon D. H., Kim J. J., Lee M., Yamaoka Y., Kato M., Osato M. S., El-Zaatari E. A., and Graham D. Y., 2000b, Isolation and characterization of tetracycline-resistant clinical isolates of Helicobacter pylori. Antimicrob. Agents Chemother. 44:3203–3205.PubMedCrossRefGoogle Scholar
  27. 27.
    Midolo P. D., Korman M. G., Turnidge J. D., and Lambert J. R., 1996, Helicobacter pylori resistance to tetracycline. Lancet 347:1194–1195.PubMedCrossRefGoogle Scholar
  28. 28.
    Moore R. A., Beckthold B., Wong S., Kureishi A., and Bryan L. E., 1995, Nucleotide sequence of the gyrA gene and characterization of ciprofloxacin-resistant mutants of Helicobacter pylori. Antimicrob. Agents Chemother. 39:107–111.PubMedCrossRefGoogle Scholar
  29. 29.
    Occhialini A., Urdaci M., Doucet-Populaire F., Bebear C. M., Lamouliatte H., and Megraud F., 1997, Macrolide resistance in Helicobacter pylori: Rapid detection of point mutations and assays of macrolide binding to ribosomes. Antimicrob. Agents Chemother. 41:2724–2728.PubMedGoogle Scholar
  30. 30.
    Oldenbreit S., Till M., and Haas R., 1996, Optimized BlaM-transposon shuttle mutagenesis of Helicobacter pylori allows identification of novel genetic loci involved in bacterial virulence. Mol. Microbiol. 20:361–373.CrossRefGoogle Scholar
  31. 31.
    Sanford J. P., Gilbert D. N., and Sande M. A., 1996, Guide to Antimicrobial Therapy, 26th edn. Antimicrobial Therapy, Inc., Dalls. pp.55.Google Scholar
  32. 32.
    Schnappinger D., and Hillen W., 1996, Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch. Microbiol. 165:359–369.PubMedCrossRefGoogle Scholar
  33. 33.
    Sisson G., Jeong J. Y., Goodwin A., Bryden L., Rossler N., Lim-Morrison S., Raudonikiene A., Berg D. E., and Hoffman P. S., 2000, Metronidazole activation is mutagenic and causes DNA fragmentation in Helicobacter pylori and in Escherichia coli containing a cloned H. pylori RdxA(+) (Nitroreductase) gene. J. Bacteriol. 182:5091–5096.PubMedCrossRefGoogle Scholar
  34. 34.
    Smeets L. C., Bijlsma J. J., Boomkens S. Y., Vandenbroucke-Grauls C. M., and Küsters J. G., 2000a, comH, a novel gene essential for natural transformation of Helicobacter pylori. J. Bacteriol. 182:3948–3954.PubMedCrossRefGoogle Scholar
  35. 35.
    Smeets L. C., Bijlsma J. J., Kuipers E. J., Vandenbroucke-Grauls C. M., and Küsters J. G., 2000b, The dprA gene is required for natural transformation of Helicobacter pylori. FEMS Immunol. Med. Microbiol. 27:99–102.CrossRefGoogle Scholar
  36. 36.
    Smith M. A., and Edwards D. I., 1997, Oxygen scavenging, NADH oxidase and metronidazole resistance in Helicobacter pylori. J. Antimicrob. Chemother. 39:347–353.PubMedCrossRefGoogle Scholar
  37. 37.
    Solea N. M., Bernasconi M. V., and Pifiaretti J. G., 2000, Mechanism of metronidazole resistance in Helicobacter pylori: comparison of the rdxA gene sequences in 30 strains. Antimicrob. Agents Chemother. 44:2207–2210.CrossRefGoogle Scholar
  38. 38.
    Stone G. G., Shortridge D., Versalovic J., Beyer J., Flamm R. K., Graham D. Y., Ghoneim A. T., and Tanaka S. K., 1997, A PCR-oligonucleotide ligation assay to determine the prevalence of 23S rRNA gene mutations in clarithromycin-resistant Helicobacter pylori. Antimicrob. Agents Chemother. 41:712–714.PubMedGoogle Scholar
  39. 39.
    Tankovic J., Lamarque D., Delchier J. C., Soussy C. J., Labigne A., andjenks P. J., 2000, Frequent association between alteration of the rdxA gene and metronidazole resistance in French and North African isolates of Helicobacter pylori. Antimicrob. Agents Chemother. 44:608–613.PubMedCrossRefGoogle Scholar
  40. 40.
    Taylor D. E., 1997, Antibiotic resistance mechanisms of Helicobacter pylori. In: Pathogenesis and host response in Helicobacter pylori infections (Moran A. P., and O’Moran C. A. eds), Normed Verlag, Bad Hamburg—Englewood N.J., pp. 101–109.Google Scholar
  41. 41.
    Taylor D. E., Ge Z., Purych D., Lo T., and Hiratsuka K., 1997, Cloning and sequence analysis of the two copies of 23S rRNA genes from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations. Antimicrob. Agents Chemother. 41:2621–2628.PubMedGoogle Scholar
  42. 42.
    Taylor D. E., Jiang Q., and Fedorak R. N., 1998, Antibiotic susceptibilities of Helicobacter pylori strains isolated in the province of Alberta. Can. J. Gastroenterol. 12:295–298.PubMedGoogle Scholar
  43. 43.
    Van der Wouden E. J., de Jong A., Thijs J. C., Kleibeuker J. H., and van Zwet A. A., 1999, Subpopulations of Helicobacter pylori are responsible for discrepancies in the outcome of nitroimi-dazole susceptibility testing. Antimicrob. Agents Chemother. 43:1484–1486.PubMedGoogle Scholar
  44. 44.
    Van Zwet A. A., Vandenbroucke-Grauls C. M., Thijs J. C., van der Wouden E. J., Gerrits M. M., and Küsters J. G., 1998, Stable amoxicillin resistance in Helicobacter pylori. Lancet 352:1595.PubMedCrossRefGoogle Scholar
  45. 45.
    Versalovic J., Shortridge D., Kibler K., Griffy M. V., Beyer J., Flamm R. K., Tanaka S. K., Graham D. Y., and Go M. E., 1996, Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 40:477–480.PubMedGoogle Scholar
  46. 46.
    Wang G., and Taylor D. E., 1998, Site-specific mutations in the 23S rRNA gene of Helicobacter pylori confer two types of resistance to macrolide-lincosamide-streptogramin B antibiotics. Antimicrob. Agents Chemother. 42:1952–1958.PubMedGoogle Scholar
  47. 47.
    Wang G., Humayun M. Z., and Taylor D. E., 1999a, Mutation as an origin of genetic variability in Helicobacter pylori. Trends Microbiol. 7:488–493.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang G., Rahman M. S., Humayun M. Z., and Taylor D. E., 1999b, Multiplex sequence analysis demonstrates the competitive growth advantage of the A-to-G mutants of clarithromycin-resistant Helicobacter pylori. Antimicrob. Agents Chemother. 43:683–685.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang G., Wilson T. J. M., Jiang Q., and Taylor D. E., Spontaneous mutations that confer antibiotic resistance in Helicobacter pylori. Antimicrob. Agents Chemother. (in press).Google Scholar
  50. 50.
    Wang Y., Roos K. P., and Taylor D. E., 1993, Transformation of Helicobacter pylori by chromosomal metronidazole resistance and by a plasmid with a selectable chloramphenicol resistance marker. J. Gen. Microbiol. 139:2485–2493.PubMedGoogle Scholar
  51. 51.
    Weisblum B., 1995, Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39:577–585.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Ge Wang
    • 1
  • Diane E. Taylor
    • 1
  1. 1.Department of Medical Microbiology and ImmunologyUniversity of Alberta, EdmontonAlbertaCanada

Personalised recommendations