Toxins, Travels and Tropisms: H. pylori and Host Cells

  • Nina R. Salama
  • Stanley Falkow
  • Karen M. Ottemann
Part of the Infectious Agents and Pathogenesis book series (IAPA)

Abstract

In this chapter we will discuss the ways in which H. pylori interacts with and manipulates host cells. Studies with H. pylori reveal a number of effects on host cells including attachment-induced membrane and cytoskeletal changes, disruption of endocytic traffic and vacuolation, alteration of transepithelial conductance, induction of proinflamatory cytokines, alteration of antigen processing, induction of cell migration, loss of mucus granules, arrest of cell cycle progression and induction of apoptosis. Molecular identification of bacterial factors responsible for a few of these effects has been achieved, but most remain H. pylori-associated phenotypes.

Keywords

Carbohydrate Bacillus Oligomer Polypeptide Fibril 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hazell S. L., Lee A., Brady L., and Hennessy W., 1986, Campylobacter pyloridis and gastritis: association with intercellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. J. Infect. Dis., 153:658.PubMedGoogle Scholar
  2. 2.
    Hessey S. J., et al., 1990, Bacterial adhesion and disease activity in Helicobacter associated chronic gastritis [see comments]. Gut, 31:134.PubMedGoogle Scholar
  3. 3.
    Noach L. A., Rolf T. M., and Tytgat G. N. J., 1994, Electron microscopic study of association between Helicobacter pylori and gastric and duodenal mucosa. Journal of Clinical Pathology (London), 47:699.Google Scholar
  4. 4.
    El-Shoura S. M., 1995, Helicobacter pylori: I. Ultrastructural sequences of adherence, attachment, and penetration into the gastric mucosa. Ultrastructural Pathology, 19:323.PubMedGoogle Scholar
  5. 5.
    Bode G., Malfertheiner P., and Ditschuneit H., 1988, Pathogenetic implications of ultrastructural findings in Campylobacter pylori related gastroduodenal disease. Scandinavian Journal of Gastroenterology. Supplement, 142:25.PubMedGoogle Scholar
  6. 6.
    Chan W. Y., Hui P. K., Leung K. M., and Thomas T. M., 1992, Modes of Helicobacter colonization and gastric epithelial damage. Histopathology, 21:521.PubMedGoogle Scholar
  7. 7.
    Kazi J. L., et al., 1990, Ultrastructural study of Helicobacter pylori-associated gastritis. Journal of Pathology, 161:65.PubMedGoogle Scholar
  8. 8.
    Marshall B. J., and Warren J. R., 1984, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1:1311.PubMedGoogle Scholar
  9. 9.
    Goodwin C. S., Armstrong J. A., and Marshall B. J., 1986, Campylobacter pyloridis, gastritis, and peptic ulceration. Journal of Clinical Pathology, 39:353.PubMedGoogle Scholar
  10. 10.
    Falk P., et al., 1993, An in vitro adherence assay reveals that Helicobacter pylori exhibits cell lineage-specific tropism in the human gastric epithelium. Proceedings of the National Academy of Sciences of the United States of America, 90:2035.PubMedGoogle Scholar
  11. 11.
    Caselli M., et al., 1989, Patterns of physical modes of contact between Campylobacter pylori and gastric epithelium: implications about the bacterial pathogenicity. American Journal of Gastroenterology, 84:511.PubMedGoogle Scholar
  12. 12.
    Chan W. Y., et al., 1991, Epithelial damage by Helicobacter pylori in gastric ulcers. Histopathology, 19:47.PubMedGoogle Scholar
  13. 13.
    Bertram T. A., et al., 1991, Gastritis associated with infection by Helicobacter pylori in humans: geographical differences. Scand.J. Gastroenterol. Suppl,181:1.PubMedGoogle Scholar
  14. 14.
    Leung K. M., Hui P. K., Chan W. Y., and Thomas T. M., 1992, Helicobacter pylori-related gastritis and gastric ulcer. A continuum of progressive epithelial degeneration [see comments]. American Journal of Clinical Pathology, 98:569.PubMedGoogle Scholar
  15. 15.
    Hui P. K., Chan W. Y., Cheung P. S., Chan J. K., and Ng C. S., 1992, Pathologic changes of gastric mucosa colonized by Helicobacter pylori [see comments]. Human Pathology, 23:548.PubMedGoogle Scholar
  16. 16.
    Doig P., and Trust T. J., 1997, The molecular basis for H. pylori adherence and colonization, in: The immunobiology of H. pylori: from pathogenesis to prevention, Ernst P., Michetti P., and Smith P., ed., Lippincott-Raven, Philadelphia.Google Scholar
  17. 17.
    Clyne M., and Drumm B., 1996, Cell envelope characteristics of Helicobacter pylori: Their role in adherence to mucosal surfaces and virulence. FEMS Immunology and Medical Microbiology, 16:141.PubMedGoogle Scholar
  18. 18.
    Watkins W. M., 1980, Biochemistry and Genetics of the ABO, Lewis, and P blood group systems. Advances in Human Genetics, 10:1.PubMedGoogle Scholar
  19. 19.
    Boren T., Normark S., and Falk P., 1994, Helicobacter pylori: Molecular basis for host recognition and bacterial adherence. Trends in Microbiology, 2:221.PubMedGoogle Scholar
  20. 20.
    Boren T., Falk P., Roth K. A., Larson G., and Normark S., 1993, Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science (Washington DC), 262:1892.Google Scholar
  21. 21.
    Falk P. G., Bry L., Holgersson J., and Gordon J. I., 1995, Expression of a human alpha-1,3/4-fucosyltransferase in the pit cell lineage of FVB/N mouse stomach results in production of Le-b-containing glycoconjugates: A potential transgenic mouse model for studying Helicobacter pylori infection. Proceedings of the National Academy of Sciences of the United States of America, 92:1515.PubMedGoogle Scholar
  22. 22.
    Clyne M., and Drumm B., 1997, Absence of effect of Lewis a and Lewis b expression on adherence of Helicobacter pylori to human gastric cells. Gastroenterology, 113:72.PubMedGoogle Scholar
  23. 23.
    Su B., et al., 1998, Type I Helicobacter pylori shows Lewisb-independent adherence to gastric cells requiring de novo protein synthesis in both host and bacteria. Journal of Infectious Diseases, 178:1379.PubMedGoogle Scholar
  24. 24.
    Ilver D., et al., 1998, Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science, 279:373.PubMedGoogle Scholar
  25. 25.
    Slomiany B., and Slomainay A., 1993, Mucus and gastric mucosal protection, in: The Stomach, Domshke W, and Konturek S., ed., Springer-Verlag, Berlin.Google Scholar
  26. 26.
    Tzouvelekis L. S., et al., 1991, In vitro binding of Helicobacter pylori to human gastric mucin. Infection and Immunity, 59:4252.PubMedGoogle Scholar
  27. 27.
    Tomb J.-F., et al., 1997, The complete genome sequence of the gastric pathogen Helicobacter pylori. Mature, 338:539.Google Scholar
  28. 28.
    Marais A., Mendz G. L., Hazell S. L., and Megraud E., 1999, Metabolism and genetics of Helicobacter pylori: The genome era. Microbiology and Molecular Biology Reviews, 63:642.PubMedGoogle Scholar
  29. 29.
    Gerhard M., et al., 1999, Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proceedings of the National Academy of Sciences of the United States of America, 96:12778.PubMedGoogle Scholar
  30. 30.
    Odenbreit S., Till M., and Haas R., 1996, Optimized BlaM-transposon shuttle mutagenesis of Helicobacter pylori allows the identification of novel genetic loci involved in bacterial virulence. Mol. Microbiol, 20:361.PubMedGoogle Scholar
  31. 31.
    Odenbreit S., Till M., Hofreuter D., Faller G., and Haas R., 1999, Genetic and functional characterization of the alpAB gene locus essential for the adhesion of Helicobacter pylori to human gastric tissue. Molecular Microbiology, 31:1537.PubMedGoogle Scholar
  32. 32.
    Yamaguchi H., et al., 1997, Heat-shock protein 60 homologue of Helicobacter pylori is associated with adhesion of H. pylori to human gastric epithelial cells. Journal of Medical Microbiology, 46:825.PubMedGoogle Scholar
  33. 33.
    Huesca M., Borgia S., Hoffman P., and Lingwood C. A., 1996, Acidic pH changes receptor binding specificity of Helicobacter pylori: A binary adhesion model in which surface heat shock (stress) proteins mediate sulfatide recognition in gastric colonization. Infection and Immunity, 64:2643.PubMedGoogle Scholar
  34. 34.
    Lingwood C. A., Law H., Pellizzari A., Sherman P., and Drumm B., 1989, Gastric glycerolipid as a receptor for Campylobacter pylori. Lancet, 2:238.PubMedGoogle Scholar
  35. 35.
    Lingwood C. A., Huesca M., and Kuksis A., 1992, The glycerolipid receptor for Helicobacter pylori (and exoenzyme S) is phosphatidylethanolamine. Infection and Immunity, 60:2470.PubMedGoogle Scholar
  36. 36.
    Lingwood C. A., Wasfy G., Han H., and Huesca M., 1993, Receptor affinity purification of a lipid-binding adhesin from Helicobacter pylori. Infection and Immunity, 61:2474.PubMedGoogle Scholar
  37. 37.
    Hazell S. L., Evans D. J. Jr., and Graham D. Y., 1991, Helicobacter pylori catalase. Journal of General Microbiology, 137:57.PubMedGoogle Scholar
  38. 38.
    Odenbreit S., Wieland B., and Haas R., 1996, Cloning and genetic characterization of Helicobacter pylori catalase and construction of a catalase-deficient mutant strain. Journal of Bacteriology,178:6960.PubMedGoogle Scholar
  39. 39.
    Trust T. J., et al., 1991, High-affinity binding of the basement membrane proteins collagen type IV and laminin to the gastric pathogen Helicobacter pylori. Infection and Immunity, 59:4398.PubMedGoogle Scholar
  40. 40.
    Valkonen K. H., Ringner M., Ljungh A., and Wadstrom T., 1993, High-affinity binding of laminin by Helicobacter pylori: Evidence for a lectin-like interaction. FEMS Immunology and Medical Microbiology, 7:29.PubMedGoogle Scholar
  41. 41.
    Valkonen K. H., Wadstrom T., and Moran A. P., 1994, Interaction of lipopolysaccharides of Helicobacter pylori with basement membrane protein laminin. Infection and Immunity, 62: 2640.Google Scholar
  42. 42.
    Valkonen K. H., Wadstrom T, and Moran A. P., 1997, Identification of the N-acetylneuraminyllactose-specific laminin-binding protein of Helicobacter pylori. Infection and Immunity, 65:916.PubMedGoogle Scholar
  43. 43.
    Evans D. G., Karjalainen T. K., Evans D. J., Graham D. Y., and Lee C.-H., 1993, Cloning, nucleotide sequence, and expression of a gene encoding an adhesin subunit protein of Helicobacter pylori. Journal of Bacteriology, 175:674.PubMedGoogle Scholar
  44. 44.
    Jones A. C., et al., 1997, A flagellar sheath protein of Helicobacter pylori is identical to HpaA, a putative N-acetylneuraminyllactose-binding hemagglutinin, but is not an adhesion for AGS cells. Journal of Bacteriology, 179:5643.PubMedGoogle Scholar
  45. 45.
    O’Toole P. W., et al., 1995, The putative neuraminyllactose-binding hemagglutinin HpaA of Helicobacter pylori CCUG 17874 is a lipoprotein. Journal of Bacteriology, 177:6049.PubMedGoogle Scholar
  46. 46.
    Simon P. M., Goode P. L., Mobasseri A., and Zopf D., 1997, Inhibition of Helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid-containing oligosaccharides. Infection and Immunity, 65:750.PubMedGoogle Scholar
  47. 47.
    Guruge J. L., et al., 1998, Epithelial attachment alters the outcome of Helicobacter pylori infection. Proceedings of the National Academy of Sciences of the United States of America, 95:3925.PubMedGoogle Scholar
  48. 48.
    Syder A. J., et al., 1999, Helicobacter pylori attaches to NeuAcalpha2,3Galbetal,4 glycoconju-gates produced in the stomach of transgenic mice lacking parietal cells. Molecular Cell, 3:263.PubMedGoogle Scholar
  49. 49.
    Opekun A. R., et al., 1999, Novel therapies for Helicobacter pylori infection. Alimentary Pharmacology & Therapeutics, 13:35.Google Scholar
  50. 50.
    Mysore J. V, et al., 1999, Treatment of Helicobacter pylori infection in rhesus monkeys using a novel antiadhesion compound. Gastroenterology, 117:1316.PubMedGoogle Scholar
  51. 51.
    Miinzenmaier A., et al., 1997, A secreted/shed product of Helicobacter pylori activates transcription factor nuclear factor-kappa B. Journal of Immunology, 159:6140.Google Scholar
  52. 52.
    Segal E. D., Cha J., Lo J., Falkow S., and Tompkins L. S., 1999, Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proceedings of the National Academy of Sciences of the United States of America, 96:14559.PubMedGoogle Scholar
  53. 53.
    Stein M., Rappuoli R., and Covacci A., 2000, Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc. Natl. Acad. Sci. USA,97:1263.PubMedGoogle Scholar
  54. 54.
    Odenbreit S., et al., 2000, Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science, 287:1497.PubMedGoogle Scholar
  55. 55.
    Asahi M., et al., 2000, Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells [see comments], J. Exp. Med., 191:593.PubMedGoogle Scholar
  56. 56.
    Ghiara P., et al., 1995, Role of the Helicobacter pylori virulence factors vacuolating cytotoxin, CagA, and urease in a mouse model of disease. Infect. Immun., 63:4154.PubMedGoogle Scholar
  57. 57.
    Kirschner D. E., and Blaser M. J., 1995, The dynamics of Helicobacter pylori infection of the human stomach. Journal of Theoretical Biology, 176:281.PubMedGoogle Scholar
  58. 58.
    Blaser M. J., and Kirschner D., 1999, Dynamics of Helicobacter pylori colonization in relation to the host response. Proceedings of the National Academy of Sciences of the United States of America, 96:8359.PubMedGoogle Scholar
  59. 59.
    Leunk R. D., Johnson P. T., David B. C., Kraft W. G., and Morgan D. R., 1988, Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. Journal of Medical Microbiology, 26:93.Google Scholar
  60. 60.
    Harris P. R., et al., 1996, Helicobadter pylori cytotoxin induces vacuolation of primary human mucosal epithelial cells. Infection and Immunity, 64:4867.PubMedGoogle Scholar
  61. 61.
    Cover T. L., Tummuru M. K., Cao P., Thompson S. A., and Blaser M. J., 1994, Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. Journal of Biological Chemistry, 269:10566.PubMedGoogle Scholar
  62. 62.
    Schmitt W., Odenbreit S., Heuermann D., and Haas R., 1995, Cloning of the Helicobacter pylori recA gene and functional characterization of its product. Molecular and General Genetics,248:563.PubMedGoogle Scholar
  63. 63.
    Telford J. L., et al., 1994, Gene structure of Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. Journal of Experimental Medicine, 179:1653.PubMedGoogle Scholar
  64. 64.
    Cover T. L., and Blaser M. J., 1992, Purification and characterization of the vacuolating toxin from Helicobacter pylori. Journal of Biological Chemistry, 267:10570.PubMedGoogle Scholar
  65. 65.
    Garner J. A., and Cover T. L., 1995, Analysis of genetic diversity in cytotoxin-producing and non-cytotoxin-productin Helicobacter pylroi strains. The Journal of Infectious Diseases, 170:290.Google Scholar
  66. 66.
    Atherton J. C., et al., 1995, Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem., 270:17771.PubMedGoogle Scholar
  67. 67.
    Forsyth M. H., Atherton J. C., Blaser M. J., and Cover T. L., 1998, Heterogeneity in levels of vacuolating cytotoxin gene (vacA) transcription among Helicobacter pylori strains. Infect. Immun., 66:3088.PubMedGoogle Scholar
  68. 68.
    Pagliaccia C., et al., 1998, The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity. Proceedings of the National Academy of Sciences, USA,95:10212.Google Scholar
  69. 69.
    Lupetti P., et al., 1996, Oligomeric and subunit structure of the Helicobacter pylori vacuolatin cytotoxin. Journal of Cell Biology, 133:801.PubMedGoogle Scholar
  70. 70.
    Cover T. L., Hanson P. I., and Heuser J. E., 1997, Acid-induced dissociation of VacA, the Helicobacter pylori vacuolatin cytotoxin, reveals its pattern of assembly. Journal of Cell Biology, 138:759.PubMedGoogle Scholar
  71. 71.
    de Bernard M., et al., 1995, Low pH activates the vacuolating toxin of Helicobacter pylori, which becomes acid and pepsin resistant. J. Biol. Chem., 270:23937.PubMedGoogle Scholar
  72. 72.
    Reyrat J. M., et al.,1999, 3D imaging of the 58kDa cell binding subunit of the Helicobacter pylori cytotoxin. Journal of Molecular Biology,290:459.PubMedGoogle Scholar
  73. 73.
    Ye D., Willhite D. C., and Blanke S. R., 1999, Identification of the minimal intracellular vacuolating domain of the Helicobacter pylori vacuolating toxin. Journal ofBiological Chemistry, 274:9277.Google Scholar
  74. 74.
    Bernard M. D., et al., 1998, Identification of the Helicobacer pylori VacA toxin domain active in the cell cytosol. Infection and Immunity, 66:6014.PubMedGoogle Scholar
  75. 75.
    Vinion-Dubiel A. D., et al., 1999, A dominant negative mutant of Helicobacter pylori vacuolating toxin (VacA) inhibits VacA-induced cell vacuolation. Journal of Biological Chemistry, 274:37736.PubMedGoogle Scholar
  76. 76.
    Cover T. L., Reddy L. Y., and Blaser M. J., 1993, Effects of ATPase Inhibitors on the Response of HeLa Cells to Helicobacter pylori vacuolating toxin. Infection and Immunity, 61:1427.PubMedGoogle Scholar
  77. 77.
    Papini E., et al., 1993, Bafilomycin Al inhibits Helicobacter pylori-induced vacuolization of HeLa cells. Moleuclar Microbiology, 7:323.Google Scholar
  78. 78.
    Papini E., et al., 1994, Cellular vacuoles induced by Helicobacter pylori originate from late endo-somal compartments. Proceedings of the National Academy of Sciences, USA, 91:9720.Google Scholar
  79. 79.
    Papini E., et al.,1996, The small GTP binding protein rab7 is essential for cellular vacuolation induced by Helicobacter pylori cytotoxin.Google Scholar
  80. 80.
    Molinari M., et al., 1997, Vacuoles induced by Helicobacter pylori toxin contain both late endoso-mal and lysosomal markers. Journal of Biolgical Chemistry,272:25339.Google Scholar
  81. 81.
    Satin B., et al., 1997, Effect of Helicobact pylori vacuolatiing toxin on maturation and extracellular release of porcathepsin D and on epidermal growth factor degredation. Journal of Biological Chemistry, 272:25022.PubMedGoogle Scholar
  82. 82.
    Massari P., et al., 1998, Binding of the Helicobacter pylori vacuolatin cytotoxin to target cells. Infection and Immunity, 66:3981.PubMedGoogle Scholar
  83. 83.
    Yahiro K., et al., 1997, Helicobacter pylori vacuolating cytotoxin binds to the 140-kDa protein in human gastric cancer cell lines, AZ-521 and AGS. Biochemical and Biophysical Research Communications, 238:629.PubMedGoogle Scholar
  84. 84.
    Yahiro K., et al., 1999, Activation of Helicobacter pylori VacA toxin by alkaline or acid conditions increases its binding to a 250-kDa receptor protein-tyrosine phosphatase beta. J. Biol. Chem., 274:36693.PubMedGoogle Scholar
  85. 85.
    Padilla P. I., et al., 2000, Morphologic differentiation of HL-60 cells is associated with appearance of RPTPbeta and induction of helicobacter pylori Vac A sensitivity [In Process Citation]. J. Biol.chem., 275:15200.PubMedGoogle Scholar
  86. 86.
    Luzzi I., et al., 1993, Detection of vacuolating toxin of Helicobacter pylori in human feces. Lancet (North American Edition), 341:1348.PubMedGoogle Scholar
  87. 87.
    Cover T. L., 1996, The vacuoloting cytotoxin of Helicbacter pylori. Molecular Microbiology,20:241.PubMedGoogle Scholar
  88. 88.
    Guarino A., et al., 1998, Enterotoxic effects of the vacuolating toxin produced by Helicobacter pylori in Caco-2 cells. Journal of Infectious Diseases,178:1373.PubMedGoogle Scholar
  89. 89.
    Szabo L., et al., 1999, Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO Journal, 18:5517.PubMedGoogle Scholar
  90. 90.
    Tombola E., et al., 1999, Heliocbacter pylori vacuolating toxin forms anion-selective channels in planar lipid bilayers: possible implications for the mechanism of cellular vacuolation. Biophyical Journal, 76:1401.Google Scholar
  91. 91.
    Tombola E., et al., 1999, Inhibition of vacuolating and anion channel activities of the VacA toxin of Helicobacter pylori. FEBS Letters, 460:221.PubMedGoogle Scholar
  92. 92.
    de Bernard M., Moschioni M., Napolitani G., Rappuoli R., and Montecucco C., 2000, The VacA toxin of Helicobacter pylori identifies a new intermediate filament-interacting protein. Embo.J, 19:48.PubMedGoogle Scholar
  93. 93.
    Molinari M., et al., 1998, Selective inhibition of Li-dependent antigen presentatioin by Helicobacter pylori toxin VacA. Journal of Experimental Medicine,187:135.PubMedGoogle Scholar
  94. 94.
    Eaton K. A., Cover T. L., Tummutu M. K. R., Blaser M. J., and Krakowka S., 1997, Role of Vacoulating Cytotoxin in Gastritis Due to Helicobacter pylori in Gnotobiotic piglets. Infection and Immunity, 65:3462.PubMedGoogle Scholar
  95. 95.
    Wirth H. P., Beins M. H., Yang M., Tham K. T., and Blaser M. J., 1998, Experimental infection of Mongolian gerbils with wild-type and mutant Helicobacter pylori strains. Infect. Immun., 66:4856.PubMedGoogle Scholar
  96. 96.
    Brenes E., et al., 1993, Helicobacter pylori causes hyperproliferation of the gastric epithelium: Pre- and post-eradication indices of proliferating cell nuclear antigen. American Journal of Gastroenterology,88:1870.PubMedGoogle Scholar
  97. 97.
    Hibi K., et al., 1997, Enhanced cellular proliferation and p53 accumulation in gastric mucosa chronically infected with Helicobacter pylori. American Journal of Clinical Pathology, 108:26.PubMedGoogle Scholar
  98. 98.
    Nardone G., et al., 1999, Effect of Helicobacter pylori infection and its eradication on cell proliferation, DNA status, and oncogene expression in patients with chronic gastritis. Gut, 44:789.PubMedGoogle Scholar
  99. 99.
    Fraser A. G., Sim R., Sankey E. A., Dhillon A. P. and Pounder R. E., 1994, Effect of eradication of Helicobacter pylori on gastric epithelial cell proliferation. Alimentary Pharmacology & Therapeutics, 8:167.Google Scholar
  100. 100.
    Cahill R. J., et al., 1995, Effect of eradication of Helicobacter pylori infection on gastric epithelial cell proliferation. Digestive Diseases and Sciences,40:1627.PubMedGoogle Scholar
  101. 101.
    Lynch D. A. F., et al., 1995, Cell proliferation in Helicobacter pylori associated gastritis and the effect of eradication therapy. Gut, 36:346.PubMedGoogle Scholar
  102. 102.
    Knipp U., Birkholz S., Kaup W., and Opferkuch W., 1996, Partial characterization of a cell proliferation-inhibiting protein produced by Helicobacter pylori. Infection and Immunity, 64:3491.PubMedGoogle Scholar
  103. 103.
    Ricci V., et al., 1996, Effect of Helicobacter pylori on gastric epithelial cell migration and proliferation in vitro: role of VacA and CagA. Infection and Immunity, 64:2829.Google Scholar
  104. 104.
    Segal E. D., Falkow S., and Tompkins L. S., 1996, Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc. Natl. Acad. Sa. USA, 93:1259.Google Scholar
  105. 105.
    Akopyants N. S., et al., 1998, Analyses of the cag pahtogenicity island of Helicobacter pylori. Molecular Microbiology, 28:37.PubMedGoogle Scholar
  106. 106.
    Censini S., et al., 1996, cag, a pathogenicity island of Helicobacter pylori, encodes Type 1-specific and disease-associated virulence factors. Proceedings of the National Academy of Sciences, USA, in press.Google Scholar
  107. 107.
    Aim R. A., et al., 1999, Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Mature (London), 397:176.Google Scholar
  108. 108.
    Kenny B., et al., 1997, Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell, 91:511.PubMedGoogle Scholar
  109. 109.
    Segal E. D., Lange C., Covacci A., Tompkins L. S., and Falkow S., 1997, Induction of host signal transduction pathways by Helicobacter pylori. Proc. Natl Acad. Sci. USA, 94:7595.PubMedGoogle Scholar
  110. 110.
    Yoshida N., et al., 1993, Mechanisms involved in Helicobacter pylori-induced inflammation. Gastroenterology, 105:1431.PubMedGoogle Scholar
  111. 111.
    Evans D. G., et al., 1995, Genetic evidens for host specificity in the adhesin’encoding genes hxaA of Helicobacter acinonyx, hnaA of H. nemestrinae and hpaA of H. pylori. Gene, 163:97.Google Scholar
  112. 112.
    Tonello F., et al., 1999, The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Molecular Microbiology, 34:238.PubMedGoogle Scholar
  113. 113.
    Alkout A. M., et al., 1997, Isolation of a cell surface component of Helicobacter pylori that binds H type 2, Lewis-a, and Lewis-b antigens. Gastroenterology, 112:1179.PubMedGoogle Scholar
  114. 114.
    Angstrom J., et al., 1998, The lactosylceramide binding specificity of Helicobacter pylori. Glycobiology, 8:297.PubMedGoogle Scholar
  115. 115.
    Saitoh T., et al., 1991, Identification of glycolipid receptors for Helicobacter pylori by TLC-immunostaining. Febs Letters, 282:385.PubMedGoogle Scholar
  116. 116.
    Kamisago S., et al., 1996, Role of sulfatides in adhesion of Helicobacter pylori to gastric cancer cells. Infection and Immunity, 64:624.PubMedGoogle Scholar
  117. 117.
    Evans D. G., Evans D. J., Jr., Moulds J. J., and Graham D. Y., 1988, N-acetylneuraminyllactose-binding fibrillar hemagglutinin of Campylobacter pylori: a putative colonization factor antigen. Infection and Immunity, 56:2896.PubMedGoogle Scholar
  118. 118.
    Ringner M., Valkonen K. H., and Wadstrom T., 1994, Binding of vitronectin and plasminogen to Helicobacter pylori. FEMS Immunology and Medical Microbiology, 9:29.PubMedGoogle Scholar
  119. 119.
    Ascencio F., Fransson L. A., and Wadstrom T., 1993, Affinity of the gastric pathogen Helicobacter pylori for the N-sulphated glycosaminoglycan heparan sulfate. Journal of Medical Microbiology, 38:240.PubMedGoogle Scholar
  120. 120.
    Fan X., et al., 1998, The effect of class II major histocompatibility complex expression on adherence of Helicobacter pylori and induction of apoptosis in gastric epithelial cells: A mechanism for T helper cell type 1-mediated damage. Journal of Experimental Medicine, 187:1659.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Nina R. Salama
    • 1
  • Stanley Falkow
    • 1
  • Karen M. Ottemann
    • 2
  1. 1.Department of Microbiology and ImmunologyStanford UniversityStanfordUSA
  2. 2.Departments of Biology and Environmental ToxicologyUniversity of California at Santa CruzSanta CruzUSA

Personalised recommendations