Advertisement

Necessity’s Potion: Inorganic Ions and Small Organic Molecules in the Epididymal Lumen

  • T. T. Turner

Abstract

The epididymal microenvironment continuously changes as the sperm move from the proximal to the distal epididymis (Turner, 1991). At any point along the duct, the luminal environment is the result of net secretory and absorptive activities of the epithelium, both at that point and at all proximal points. The microenvironment consists of water, inorganic ions, small organic molecules, and organic macromolecules (proteins). The present chapter focuses on the inorganic ions and small organic molecules; a separate chapter addresses epididymal proteins (see Chapter by Dacheux and Dacheux). Also, separate chapters on ion transport systems (see Chapter by Wong et al.) and reactive oxygen ions (see Chapter by Aitken) will cover these aspects; these will not be discussed here.

Keywords

Small Organic Molecule Epididymal Sperm Sperm Maturation Tammar Wallaby Male Reproductive Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acott, T.S. and Carr, D.W., 1984, Inhibition of bovine spermatozoa by cauda epididymal fluid: II. Interaction of pH and a quiescence factor. Biol Reprod. 30: 926–935.PubMedCrossRefGoogle Scholar
  2. Agrawal, Y.P. and Vanha-Pertula, T., 1988, Gamma-glutamyl transpeptidase, glutathione, and L-glutamic acid in the rat epididymis during postnatal development. Biol. Reprod. 38: 996–1000.PubMedCrossRefGoogle Scholar
  3. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberto K., Watson J.D., 1989, Molecular Biology of the Cell. Garland Publishing, Inc. New York.Google Scholar
  4. Altar, D., Spiess, M., Mandinova, A., Cierpka, H., Noll, G., and T.F. Lüscher, 1997, Carnitine-from cellular mechanisms to potential clinical applications in heart disease. Eur. J. Clin. Invest. 27: 973–976.CrossRefGoogle Scholar
  5. Alvarez, J. G. and Storey, B.T., 1983, Taurine, hypotaurine, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility. Bid. Reprod. 29: 548–555.CrossRefGoogle Scholar
  6. Armstrong, V.L., Clulow, J., Murdoch R.N., and Jones, R.C., 1994, Intracellular signal transduction mechanisms of rat epididymal spermatozoa and their relationship to motility and metabolism.Mol. Reprod. Develop. 38: 77–84.CrossRefGoogle Scholar
  7. Au, C. L. and Wong, P.Y.D., 1980, Luminal acidification by the perfused rat cauda epididymidis.J. Physiol. 309:419–427.PubMedGoogle Scholar
  8. Breitbart, H., Wehbie, R., and Lardy, H., 1990, Regulation of calcium transport in bovine spermatozoa.Biochem. Biophys. Acta. 1027: 72–78.PubMedCrossRefGoogle Scholar
  9. Breton, S., Smith, P.J.S., Lui, B., and Brown, D., 1996, Acidification of the male reproductive tract by a proton pumping (H+) - ATPase.Nature Med. 2: 470–472.PubMedCrossRefGoogle Scholar
  10. Brooks, D.E., 1979, Carbohydrate metabolism in the rat epididymis: evidence that glucose is taken up by tissue slices and isolated cells by a process of facilitated transport. Biol. Reprod. 21: 19–26.PubMedCrossRefGoogle Scholar
  11. Brooks, D.E., 1980, Carnitine in the male reproductive tract and its relation to the metabolism of the epididymis and spermatozoa. In: Carnitine Biosynthesis, Metabolism, and Functions R.A. Frankel and J. D. McGarry, eds. Academic Press, New York.Google Scholar
  12. Brooks, D.E., Hamilton, D.W., and Mallek, A.H., 1974, Carnitine and glycerylphorphorylcholine in the reproductive tract of the male rat. J. Reprod. Fert. 36: 141–160.CrossRefGoogle Scholar
  13. Caflisch, C.R., 1992, Acidification of testicular and epididymal fluids after surgically-induced varicocele. Int. J. Androl. 15:238–245.PubMedCrossRefGoogle Scholar
  14. Chan, H.C., Ko, W.H., Zhao, W., Fe, W.D., and Wong, P.Y.D., 1996, Evidence for independent Cl- and HC03- secretion and involvement of an apical Na+ - HCO-3 co-transporter in cultured not epididymal epithelia. Exp. Physiol. 81: 515–524.PubMedGoogle Scholar
  15. Chaturapanich, G. and Jones, R.C., 1991, Morphometry of the epididymis of the tammar, Macropus eugenii and estimation of some physiological parameters. Reprod. Fert. Develop. 3: 651–658.CrossRefGoogle Scholar
  16. Clulo, J., Jones, R.C., Hansen, L.A., and Man, S.Y., 1998, Fluid and electrolyte reabsorption in the ductuli efferentes testis. In: The Epididymis: Cellular and Molecular Aspects. R.C. Jones, M.K. Holland, and C. Doberska, eds. Journals of Reproduction and Fertility, Ltd. Cambridge.Google Scholar
  17. Clulo, J., Jones, R.C., and Murdock, R.N., 1992, Maturation and regulation of the mobility of spermatozoa in the epididymis of the tammar wallaby (Macropus eugenii). J. Reprod. Fert. 94: 295–303.CrossRefGoogle Scholar
  18. Cooper, T.G., 1970, In defense of the human epididymis. Fertil. Steril. 54: 965–975.Google Scholar
  19. Cooper, T.G. 1982, Secretion of inositol and glucose by the perfused rat cauda epididymidis.J. Reprod. Fert. 64: 373–379.CrossRefGoogle Scholar
  20. Cooper, T.G. and Brooks, D.E., 1981, Entry of glycerol into the rat epididymis and its utilization by epididymal spermatozoa.J. Reprod. Fert. 61: 163–169.CrossRefGoogle Scholar
  21. Cooper, T.G., Guderman T.W., and Young, C.H., 1986, Characteristics of the transport of carnitine into the cauda epididymidis of the rat is ascertained by luminal perfusion in vitro. Int. J. Androl. 9: 348–358.PubMedCrossRefGoogle Scholar
  22. Cooper, T.G. and Waites, G.M.H. 1979, Investigation by luminal perfusion of the transfer of compounds into the epididymis of the anesthetized rat J. Reprod. Fert. 56: 159–164.CrossRefGoogle Scholar
  23. Crabo, B., 1965, Studies on the composition of epididymal content in bulls and boars. Acta Vet. Scand. 6: Suppl 5.Google Scholar
  24. Crichton, E.G., Hinton, B.T., Pallone, T.L., and Hammerstedt, R.H., 1994, Hyperosmolality and sperm storage in hibernating bats: prolongation of sperm life by dehydration. Am. J. Physiol. 267: R1363–R1370.PubMedGoogle Scholar
  25. Danzo, B.J., 1995, The effects of gonadotropin-releasing hormone antagonist on androgen-binding protein distribution and other parameters in the adult male rat. Endocrinology. 136: 4004–4011.PubMedCrossRefGoogle Scholar
  26. Danzo, B.J., Wolfe, M.S., and Curry, J., 1977, The presence of an estradiol binding component in cytosol from immature rat epididymides. Mol. Cell. Endocrinol. 6: 271–279.PubMedCrossRefGoogle Scholar
  27. Dawson, R.M.C., Mann, T., and White, I.G., 1957, Glycerylphosphorylcholine and phosphocholine in semen and their relation to choline. Biochem. J. 65: 627–632.PubMedGoogle Scholar
  28. Dawson, R.M.C. and Rowlands, I.W., 1958, Glycerylphosphorylcholine in the male reproductive tract of rats and guinea pigs. Quart. J. Exp. Physiol. 44: 26–34.Google Scholar
  29. Duling, B.R., 1988, Components of renal function. In: Physiology R.M. Berne and J.L. Levy, eds. C.V. Mosby Co. Washington, D.C.Google Scholar
  30. Fellman, J.H., Green, T.R., and Eicher, A.L., 1987, The oxidation of hypotaurine to taurine: bis-aminoethyl-alpha-disulfonate, a metabolic intermediate in mammalian tissue. Adv. Exp. Med. Biol. 217: 39–48.PubMedGoogle Scholar
  31. Frayne, J., McMillen, A., and Hall, L., 1998, Expression of phosphatidylethanolamine-binding protein in the male reproductive tract: immunolocalization and expression in prepubertal and adult rat testis and epididymides.Mol. Reprod. Dev. 49: 454–460.PubMedCrossRefGoogle Scholar
  32. Ganjam, V., and Amann, 1976, Steroids in fluids and sperm entering and leaving the bovine epididymis, epididymal tissue and accessory sex gland secretions. Endocrinology. 99: 1618–1630.PubMedCrossRefGoogle Scholar
  33. Ganjam, V.K., Whelan, H.A., and Bracket., B.G., 1980, Steroid and protein components within the stallion epididymis. J. Androl. 1: 84.Google Scholar
  34. Gerard, A., Khanfri, J., Gueant, J.L., Fremont, S., Nicolas, J.P., Grignon, G., and Gerard, H. 1988, Electron microscope radioautographic evidence of in vivo androgen-binding protein internalization in the rat epididymis principal cells. Endocrinology 122: 1297–1307.PubMedCrossRefGoogle Scholar
  35. Guttroff, R.F., Cooke, P.S., and Hess, R.A., 1992, Blind-ending tubules and branching patterns of the rat ductuli efferentes.Anat. Rec. 232: 423–431.PubMedCrossRefGoogle Scholar
  36. Hall, J.C., Hadley, J., and Doman T., 1991, Correlation between changes in rat sperm membrane lipids, protein, and membrane physical state during epididymal maturation. J. Androl. 12: 76–87.PubMedGoogle Scholar
  37. Hamilton, D.W. and Olson, G.E., 1976, Effects of carnitine on oxygen uptake and utilization of [U-C14] palmitate by ejaculated bull spermatozoa. J. Reprod. Fert. 46: 195–202.CrossRefGoogle Scholar
  38. Hammerstedt, R.H., Keith, A.D., Snipes, W., Amann, R.A., 1978, Use of spin labels to evaluate effects of cold shock and osmolality on sperm.Biol. Reprod. 18: 686–696.PubMedCrossRefGoogle Scholar
  39. Hess, R.A., Bunick, D., Lee, K.H., Bahr, J., Taylor, J.A., Korach, K.S., Lubahn, D.B., 1997, A role of estrogen in the male reproductive system. Nature. 390: 509–512.PubMedCrossRefGoogle Scholar
  40. Hess, R.A., Bunick, D., Lubahn, D.B., Zhou, Q., and Bouma, J. (2000) Morphologic changes in efferent ductules and epididymis in estrogen receptor-α knock-out mice. J. Androl. 21: 107–121.PubMedGoogle Scholar
  41. Hinton, B.T., Brooks, D.E., Dott, H.M., and Setchell, B.P., 1981, Effects of carnitine and some related compounds on the motility of rat spermatozoa from the caput epididymidis. J. Reprod. Fert. 61: 59–64.CrossRefGoogle Scholar
  42. Hinton, B.T. and Hernandez, H., 1985, Selective luminal absorption of L-carnitine from the proximal regions of the rat epididymis. Possible relationships to development of sperm motility. J. Androl. 6: 300–305.PubMedGoogle Scholar
  43. Hinton, B.T. and Howards, S.S., 1981, Rat testis and epididymis can transport [3H] — 3-0-methyl-D-glucose, [3H] — inositol, and [3H]- aminobutyric acid across its epithelia in vivo. Biol. Reprod. 27: 1181–1189.CrossRefGoogle Scholar
  44. Hinton, B.T, Palladino, M.A., Rudolph, D., and Labus, J.C., 1995, The epididymis as protector of maturing sperm. Reprod. Fert. Dev. 7: 731–745.CrossRefGoogle Scholar
  45. Hinton, B.T. and Setchell, B.P., 1980, Concentrations of glycerylphosphorylcholine, phosphocholine, and free inorganic phosphate in the luminal fluid of the rat testis and epididymis. J. Reprod. Fert. 58: 401– 406.CrossRefGoogle Scholar
  46. Hinton, B.T., and Setchell, B.P., 1980, Concentration and uptake of carnitine in the rat epididymis: a micropuncture study. In: Carnitine Biosynthesis, Metabolism, and Function. R.A. Frankel and J. D. McGarry, eds. Academic Press. New York.Google Scholar
  47. Hinton, B.T, Snoswell, A.M., and Setchell, B.P., 1979, The concentration of carnitine in the luminal fluid of the testis and epididymis of the rat and some other mammals. J. Reprod. Fert. 56: 105–111.CrossRefGoogle Scholar
  48. Hinton, B. T. and Turner, T. T., 1988, Is the epididymis a kidney analogue? News Physiol. Sci. 3: 28–31.Google Scholar
  49. Hinton, B.T., White, R.W., and Setchell, B.P., 1980, Concentrations of myo-inositol in the luminal fluid of the mammalian testis and epididymis. J. Reprod. Fert. 58: 395–399.CrossRefGoogle Scholar
  50. Hinton, T.T., 1990, The testicular and epididymal luminal amino acid microenvironment in the rat. J. Androl. 11:498–505.PubMedGoogle Scholar
  51. Janulis, L, Bahr, J.M., Hess, R.A., Janssen, S., Osawa, Y., and Bunick, D., 1998, Rat testicular germ cells and epididymal sperm contain p450 aromatase.J. Androl. 19: 65–71.PubMedGoogle Scholar
  52. Jenkins, A.D., Lechene, C.P., and Howards, S.S., 1983, The effects of estrogen administration in vivo on the elemental composition of the intraluminal fluids of the seminiferous tubules, rete testis, and epididymis of the rat J. Androl. 4: 272–275.PubMedGoogle Scholar
  53. Jensen, L.J., Schmitt, B.M., Berger, U.V., Nsumu, N.N., Boron, W.F., Hediger, M.A., Brown D., and Breton, S. 1999, Localization of sodium bicarbonate cotransporter (NBC) protein and messenger ribonucleic acid in rat epididymis. Biol. Reprod. 60: 573–579.PubMedCrossRefGoogle Scholar
  54. Jessee, S.J. and Howards, S.S., 1976, A survey of sperm, potassium , and sodium concentrations in the tubular fluid of the hamster epididymis. Biol. Reprod. 15: 626–631.PubMedCrossRefGoogle Scholar
  55. Jeulin, C. and Levin, L.M., 1996, Role of free L-carnitine and acetyl-L-carnitine in post-gonadal maturation of mammalian spermatozoa. Human Reprod. Upd. 2: 87–102.CrossRefGoogle Scholar
  56. Jiang, F.X., Temple-Smith, P., and Wreford, N.G., 1994, Postnatal differentiation and development of the rat epididymis: a stereological study. Anat. Rec. 238: 191–198PubMedCrossRefGoogle Scholar
  57. Johnson, A.L. and Howards, S.S., 1977, Hyperosmolality in intraluminal fluids from hamster testis and epididymis: a micropuncture study.Science. 195: 492–493.PubMedCrossRefGoogle Scholar
  58. Jones, R., 1998, Plasma membrane structure and remodeling during sperm maturation in the epididymis.J. Reprod. Fert. 53: 73–84.Google Scholar
  59. Jones, R. C., 1999, To store or mature spermatozoa? The primary role of the epididymis. Int. J. Androl. 22: 57–67.PubMedCrossRefGoogle Scholar
  60. Jones, R.C. and Clulo, J., 1987, Regulation of the elemental composition of the epididymal fluids in the tammar, Macropus eugenii. J. Reprod. Fertil. 81: 583–590.PubMedCrossRefGoogle Scholar
  61. Jones, R.C. and Clulo, J., 1994, Interactions of sperm and the reproductive ducts of the male tammar wallaby, Macropus eugenii (Macropidae: marsupialia).Reprod. Fert. Dev. 6:437–444.CrossRefGoogle Scholar
  62. Kaunisto, K., Parkkila, S., Parkkila, A.K., Waheed, A., Sly, W.S., and Rajaniemi, H., 1995, Expression of carbonic anhydrase isoenzymes IV and II in rat epididymal duct. Biol. Reprod. 52: 1350–1357.PubMedCrossRefGoogle Scholar
  63. Kidroni, G., Harnir, T., Mancyel. J., Fruthoff, I.W., Palti, Z., and Ron, M, 1983. Vitamin D3 metabolites in rat epididymis: high 24,25-dihydroxy vitamin D3 levels in the cauda region. Biochem. Biophys. Res. Commun. 113:982–989.PubMedCrossRefGoogle Scholar
  64. Killian, G.J. and Chapman, D.A., 1980, Glycerylphosphorylcholine, sialic acid, and protein in epithelial cells isolated from the rat caput epididymis by elutriation. Biol. Reprod. 22: 846–850.PubMedCrossRefGoogle Scholar
  65. Koster, J.F. 1995, Free-radical damage and carnitine esters. In: The Carnitine System J. W. DeJong and R. Ferrari, eds. Kluwer Academic Publishers. Boston.Google Scholar
  66. Leung, P.S. Chan, J.C., Chung, Y.W. Wong, T.P., and Wong, P.Y.D., 1998, The role of angiotensins and prostaglandins in the control of anion secretion by the rat epididymis. J. Reprod. Fert. Suppl. 53: 15–22.Google Scholar
  67. Levin, L.M. and Sulimovici, S., 1975, The distribution of radioactive myoinositol in the reproductive tract of the male rat.J. Reprod. Fert. 43: 355–358.CrossRefGoogle Scholar
  68. Levine, N. and Kelly, H., 1978, Measurement of pH in the rat epididymis in vivo. J. Reprod. Fert. 52: 333–335.CrossRefGoogle Scholar
  69. Levine, N. and Marsh, D.J., 1971; Micropuncture studies of the electrochemical aspects of fluid and electrolyte transport in individual seminiferous tubules. The epididymis and the vas deferens in rats. J. Physiol. 213: 557–570.PubMedGoogle Scholar
  70. Marquis, N.R. and Fritz, I.B., 1964, Enzymological determination of free carnitine concentrations in rat tissues. J. Lipid Res. 5: 184–187.PubMedGoogle Scholar
  71. Markey, C.M., Rudolph, D.B., Labus, J.C., and Hinton, B.T., 1998, Oxidative stress differentially regulates the expression of ???-glutamyl transpeptidase mRNA’s in the initial segment of the rat epididymis. J. Androl. 19: 92–99.PubMedGoogle Scholar
  72. Meistrich, M.L., Hughes, T.J., and Bruce, W.R., 1975, Alteration of epididymal sperm transport and maturation in mice by estrogen and testosterone. Nature. 358: 145–147.CrossRefGoogle Scholar
  73. Morton, B., Harrigan-Lum, J., Albagli, L., and Jooss, T., 1974, The activation of motility in quiescent hamster sperm from the epididymis by calcium and cyclic nucleotides. Biochem. Biophys, Res. Com. 56: 372–379.CrossRefGoogle Scholar
  74. Nikhla, A.M., Khan, M.S., Romas, N.P., Rosner W. 1994, Estradiol causes rapid accumulation of camp in human prostate. Proc. Natl. Acad. Sci, USA. 91: 5402–5405.CrossRefGoogle Scholar
  75. Nolan, J.P. and Hammerstedt, R.H., 1997, Regulation of membrane stability and the acrosome reaction in mammalian sperm. FASEB J. 11: 670–682.PubMedGoogle Scholar
  76. Oliphant, G., Hinton, B.T., and Colonna, K., 1985, Elemental fluxes in sperm developing in the epididymis. J. Androl. Suppl. 6: 136P.Google Scholar
  77. Pholpramool, C. and Chaturapanich, G., 1979, Effect of sodium and potassium concentrations and pH in the maintenance of motility of rabbit and rat epididymal spermatozoa.J. Reprod. Fert. 57: 245–251.CrossRefGoogle Scholar
  78. Rankin, T.L., Ong, D.E., and Orgebin-Crist, M.C., 1992, The 18-kDa mouse epididymal protein (Mep-10 binds retinoic acid, Biol. Reprod. 46: 767–771PubMedCrossRefGoogle Scholar
  79. Rebouche, C.J., and Seim, H., 1998, Carnitine metabolism and its regulation in microorganisms and mammals. Ann. Rev. Nutr. 18: 39–61.CrossRefGoogle Scholar
  80. Reid, B.L. and Cleland, K.W., 1957, The structure and function of the epididymis. 1. histology of the rat epididymis. Anat. J. Zool. 5: 223–252.Google Scholar
  81. Robaire, B. and Hermo, L., 1988, Efferent ducts, epididymis, and vas deferens: structure, functions, and their regulation. In: The Physiology of Reproduction Vol. I. E. Knobil and J.D. Neill, eds. Raven Press, New York.Google Scholar
  82. Roselli, C.G., West, N.B., and Brenner, R.M., 1991, Androgen receptor and 5α-reductase activity in the ductuli efferentes and epididymis of adult rhesus macaques.Biol. Reprod. 44: 739–745.PubMedCrossRefGoogle Scholar
  83. Salisbury, G.W. and Cragle, R.G., 1956, Freezing point depression and mineral levels of fluids of the ruminant male reproductive tract Proc.Int. Cong. An. Reprod. 1: 25–28.Google Scholar
  84. Saunders, P.T.K., McKinnell, C., Millar M.R., Gaughan, J., Turner, K.J., Jéjou, B., Syed, V., and Sharpe, R.M., 1995, Phosphatidylethanolamine binding protein is an abundant secretory product of haploid testicular germ cells in the rat. Mol. Cell. Endocrinol. 107: 221–230.CrossRefGoogle Scholar
  85. Scott, T.W., Wales, R.G., Wallace, K.C., and White, I.G., 1963, Composition of ram epididymal and testicular fluid and the biosynthesis of glycerylphos-phorylcholine by the rabbit epididymis. J. Reprod. Fert. 6:49–59.CrossRefGoogle Scholar
  86. Stoltenberg, M., Therkiddsen, P., Andreasen, A., Jenson, K.B., Juhl S., Ernst, E., and Danscher, G., 1998, Computer-assisted visualization of the rat epididymis: a methodological study based on paraffin sections automatographically stained for zinc ions.Histochem. J. 30: 237–244PubMedCrossRefGoogle Scholar
  87. Sujarit, S., Chatarapanich, G., and Pholpramool, C., 1985, Evidence for blood myo-inositol as a source of the epididymal secretion in the perfused cauda epididymis of the rat. Andrologia. 17: 321–326.PubMedCrossRefGoogle Scholar
  88. Sylvester, S.R., 1993, Secretion and transport of binding proteins. In: The Sertoli Cell. L. D. Sussell and M.D. Griswold, eds, Cache River Press. Clearwater.Google Scholar
  89. Tamm, J., Volkwein, U., Berker, H., and Klosterhalfen, H., 1982, Comparison of steroid concentrations in venous and arterial blood across the human testis. Unconjugated 5α-androstane - 3 ß-diol: an important androgen metabolite of the human testicular-epididymal unit J. Steroid. Bischem. 16: 567– 571.CrossRefGoogle Scholar
  90. Tekpetey ,F. R., and Amann, R.P., 1988, Regional and seasonal differences in concentrations of androgen and estrogen receptors in ram epididymal tissue. Biol. Reprod. 38: 1061–1060.CrossRefGoogle Scholar
  91. Tony, T.W. and Danzo, B.J., 1999, Androgen and estrogen effects on protein synthesis by the adult rabbit epididymis. Endocrinology. 125: 243–249.CrossRefGoogle Scholar
  92. Toshimori, K., Kuwajima, M, Yoshinaga, K., Wakayama, T., and Shima, T., 1999, Dysfunctions of the epididymis as a result of primary carnitine deficiency in juvenile visceral steatosis mice. FEBS Letters. 446: 323–326.PubMedCrossRefGoogle Scholar
  93. Turner, T.T., 1984, Resorption vs secretion in the rat epididymis. J. Reprod. Fert. 72: 509–514.CrossRefGoogle Scholar
  94. Turner, T.T., 1988, On the development and use of alloplastic spermatoceles. Fertil. Steril. 49: 387–396.PubMedGoogle Scholar
  95. Turner, T.T., 1991, Spermatozoa are exposed to a complex microenvironment as they transverse the epididymis. Ann. N.Y. Acad. Sci. 637: 364–383.PubMedCrossRefGoogle Scholar
  96. Turner, T.T., 1995, On the epididymis and its role in the development of the fertile ejaculate. J. Androl. 16: 292–298.PubMedGoogle Scholar
  97. Turner, T. T., 1997, The epididymis and accessory sex organs. In: Infertility in the Male L.I. Lipshultz and S.S. Howards, eds. Mosby, BaltimoreGoogle Scholar
  98. Turner, T.T. and Cesarini, D. M, 1983, The ability of the rat epididymis to concentrate spermatozoa responsiveness to aldosterone. J. Androl A : 177–202.Google Scholar
  99. Turner, T.T., D’Addario, D., and Howards, S.S., 1978, Further observations on the initiation of sperm motility.Biol. Reprod. 19: 1095–1101.PubMedCrossRefGoogle Scholar
  100. Turner, T.T., D’Addario, D.A., and Howards, S.S., 1980, 3H-3-0-methyl-D-glucose transport from blood into the lumina of the seminiferous and epididymal tubules in intact and vasectomized hamsters. J. Reprod. Fert. 60: 235–289.CrossRefGoogle Scholar
  101. Turner, T.T., Giles, R.D., 1981, The effects of carnitine, glycerylphosphorylcholine, caffeine, and egg yolk on the motility of rat epididymal spermatozoa. Gam. Res. 4: 293–295.CrossRefGoogle Scholar
  102. Turner, T.T., Gleavy, J.L., Harris, J.M., 1990, Fluid movement in the lumen of the rat epididymis: effect of vasectomy and subsequent vasovasostomy. J. Androl. 11:422–428.PubMedGoogle Scholar
  103. Turner T.T. and Howards. S.S., 1978, Factors involved in the initiation of sperm motility. Biol. Reprod. 18: 571–78.PubMedCrossRefGoogle Scholar
  104. Turner, T.T., Jones, C.E., Howards, S.S., Ewing, L.L., Zegeye, B., and Gunsalus, G.L., 1984, On the androgen microenvironment of maturing spermatozoa. Endocrinology. 115: 1925–1932.PubMedCrossRefGoogle Scholar
  105. Turner, T.T., Miller D.W., and Avery, E.R., 1995, Protein synthesis and secretion by the rat caput epididymis. Biol. Reprod. 52: 1012–1019.PubMedCrossRefGoogle Scholar
  106. Turner, T.T. and Reich, 1985, Cauda epididymal sperm motility: a comparison among five species. Biol. Reprod. 32: 120–128.PubMedCrossRefGoogle Scholar
  107. Turner, T.T., Riley R.A., Mruk, D.D., and Cheng, C.Y., 1999, Obstruction of the vas deferens alters protein secretion by the rat caput epididymal epithelium in vivo. J. Androl. 20: 289–297.PubMedGoogle Scholar
  108. Usselman, M.D., and Cone, R.A., 1983, Rat sperm are mechanically immobilized in the cauda epididymis by “immobilin” a high molecular weight glycoprotein. Biol Reprod. 29: 1241–1253.PubMedCrossRefGoogle Scholar
  109. Voglmayr, J.K. and Amann, R.P. 1973, The distribution of free myoinositol in fluids, spermatozoa, and tissues of the bull genital tract and observations on its uptake by the rabbit epididymis. Biol Reprod. 8: 504–513.PubMedGoogle Scholar
  110. von Lanz, T. and Neuhaüser, G., 1964, Morphometrische analyse des menschlichen nebanhodens. Z. Anat. Entwgesch. 124: 126–152.CrossRefGoogle Scholar
  111. Wales, R.G., Wallace, J.C., and White I.G., 1966, Composition of bull epididymal and testicular fluid. J. Reprod. Fert. 12: 139–144.CrossRefGoogle Scholar
  112. Wang, C.Y., Killian, G., and Chapman, D.A., 1981, Association of [14C] phosphatidylcholine with rat epididymal sperm and its conversion to [14C] glycerylphosphorylcholine by sperm and principal cells. Biol. Reprod. 23: 469–476.Google Scholar
  113. Whelan, H.A., 1980, Experimental alteration of golden hamster epididymal contents. Biol. Reprod. Suppl 1:41.Google Scholar
  114. White, I.G., 1973, Biochemical aspects of spermatozoa and their environment in the male reproductive tract. J. Reprod. Fert. Suppl. 18: 225–235.Google Scholar
  115. Wong, P.Y.D. Au, C.L., and Ngai, H. K., 1979, Electrolyte and water transport in rat epididymis-its possible role in sperm maturation. Int. J. Androl. Suppl. 2: 608–628.Google Scholar
  116. Wong, P.Y.D., Lee, W.M., and Tsang, A.Y.F., 1981, The effects of sodium and amiloride on the motility of caudal epididymidal spermatozoa of the rat. Experientia . 37: 69–71.PubMedCrossRefGoogle Scholar
  117. Wong, P.Y.D., Toang, R.Y.F., and Lee, M.W., 1980, Effect of intraluminal ion concentrations on the secretion of rat cauda epididymidis in vivo. Pflugers Arch. 387: 61–66.PubMedCrossRefGoogle Scholar
  118. Young, C.M., Cooper, T.G., Bergmann, M., and Schulze, H. 1991, Organization of tubules in the human caput epididymidis and the ultrastructure of their epithelia. Am. J. Anat. 191:261–279.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • T. T. Turner
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations