Skip to main content

Cellular Interactions and the Blood-Epididymal Barrier

  • Chapter
The Epididymis: From Molecules to Clinical Practice

Abstract

The interactions among cells and between cells and the extracellular matrix represents a dynamic process involving cellular recognition, interaction of structural proteins and complex intracellular signalling pathways which we are only now beginning to understand. The complexity of reproductive organs is suggestive of a highly regulated communication system involving the nervous and endocrine systems, as well as finely tuned communication between the cells involved in gamete formation. The luminal environment of the epididymis is highly specialized with specific proteins, ions, pH, required for sperm maturation. Tight junctions between epididymal epithelial cells regulate this luminal environment and distinguish it from blood. Thus the regulation of epididymal tight junctions and the function and regulation of cadherins, cell adhesion molecules involved in adhering junction formation, are essential to understanding epididymal physiology. Gap junctions, also part of the epididymal junctional complex, establish communication between epididymal cells and therefore allow the coordination of luminal changes which are necessary for sperm maturation and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, A., and Hoffer, A.P. (1989) Ultrastructural studies on the development of the blood-epididymis barrier in immature rats. J. Androl. 10:425.

    PubMed  CAS  Google Scholar 

  • Anderson, J.M. (1996) Cell signalling: MAGUK magic. Curr. Biol. 6:382.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, A.M., Edvardsen, K., and Skakkebaek, N.E. (1994). Expression and localization of N- and E-cadherin in the human testis and epididymis. Int. J. Androl. 17:174.

    Article  CAS  Google Scholar 

  • Balda, M.S. and Matter, K. (1998) Tight junctions. J. Cell Sci. 111:541.

    PubMed  CAS  Google Scholar 

  • Balda, M.S., Gonzalez-Mariscal, L., Macias-Silva, M., Torres-Marquez, M.E., Garcia Sainz, J.A. and Cereijido, M. (1991). Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J. Membr. Biol. 122:193.

    Article  PubMed  CAS  Google Scholar 

  • Balda, M.S., Gonzalez-Mariscal, L., Matter, K., Cereijido, M., and Anderson, J.M. (1993) Assembly of the tight junction: the role of diacylglycerol. J. Cell Biol. 123:293.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ze’ev, A. (1999) The dual role of cytoskeletal anchor proteins in cell adhesion and signal transduction. Ann. N Y Acad. Sci. 886:37.

    Article  PubMed  Google Scholar 

  • Bevans, C.G., Kordel, M., Rhee, S.K., and Harris, A.L. (1998) Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J. Biol. Chem. 273:2808.

    Article  PubMed  CAS  Google Scholar 

  • Bohmer, T. (1978) Accumulation of carnitine in rat epididymis after injection of (3H)butyrobetaine in vivo: Quantitative aspects and the effects of androgens and anti-androgens. Mol. Cell Endocrinol. 11:213.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, D.E., Hamilton, D.W., and Mallek, A.H. (1973) The uptake of L-(methyl-3H) carnitine by the rat epididymis. Biochem. Biophys. Res. Commun. 52:1354.

    Article  PubMed  CAS  Google Scholar 

  • Breuss, J.M., Gillett, N., Lu, L., Sheppard, D., and Pytela, R. (1993) Restricted distribution of integrin ß6 mRNA in primate epithelial tissues. J. Histochem. Cytochem. 41:1521.

    Article  PubMed  CAS  Google Scholar 

  • Byers, S.W., Citi, S., Anderson, J.M., and Hoxter, B. (1992) Polarized functions and permeability properties of rat epididymal epithelial cells in vitro. J. Reprod. Fertil. 95:385.

    Article  PubMed  CAS  Google Scholar 

  • Byers, S., Jegou, B., MacCalman, C., and Blaschuk, O. (1993) Sertoli cell adhesion molecules and the collective organization of the testis. In: The Sertoli Cell, Russell, L.D. and Griswold, M.D. (eds.). Cache River Press, Clearwater, Fl., p. 461.

    Google Scholar 

  • Cereijido, M., Valdes, J., Shoshani, L., and Contreras, R.G. (1998) Role of tight junctions in establishing and maintaining cell polarity. Annu. Rev. Physiol. 60:161.

    Article  PubMed  CAS  Google Scholar 

  • Citi, S. (1992) Protein kinase inhibitors prevent dissociation induced by low extracellular calcium in MDCK epithelial cells. J. Cell Biol. 117:169.

    Article  PubMed  CAS  Google Scholar 

  • Cordenonsi, M., D’Atri, F., Hammar, E., Parry, D.A.D., Kendrick-Jones, J., Shore, D., and Citi, S. (1999) Cingulin contains coiled globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J.Cell Biol. 147:1569.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, T.G. (1982) Secretion of inositol and glucose by the perfused rat cauda epididymidis. J. Reprod. Fertil. 64:373.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, T.G., Yeung, C.H., Lui, W., and Yang, C.Z. (1985) Luminal secretion of myo-inositol by the rat epididymis perfused in vitro. J. Reprod. Fertil. 74:135.

    Article  PubMed  CAS  Google Scholar 

  • Crow, D.S., Beyer, E.C., Paul, D.L., Kobe, S.S., and Lau, A.F. (1990) Phosphorylation of connexin43 gap junction protein in uninfected and rous sarcoma virus-transformed mammalian fibroblasts. Mol. Cell Biol. 10:1754.

    PubMed  CAS  Google Scholar 

  • Cyr, D.G., and Robaire, B. (1991). Developmental regulation of epithelial and placental-cadherin mRNA in the rat epididymis. Ann. NY. Acad. Sci. 637,399.

    Article  PubMed  CAS  Google Scholar 

  • Cyr, D.G., Blaschuk, O.W., and Robaire, B. (1992) Identification and developmental regulation of cadherin messenger ribonucleic acids in the rat testis. Endocrinology 131:139.

    Article  PubMed  CAS  Google Scholar 

  • Cyr, D.G., Hermo, L., Egenberger, N., Mertineit, C., Trasler, J., and Laird, D. (1999) Cellular immuno-localization of occludin during embryonic and postnatal development of the mouse testis and epididymis. Endocrinology 140: 3815.

    Article  PubMed  CAS  Google Scholar 

  • Cyr, D.G., Hermo, L., and Laird, D.W. (1996) Immunocytochemical localization and regulation of connexin43 in the adult rat epididymis. Endocrinology 137 : 1474.

    Article  PubMed  CAS  Google Scholar 

  • Cyr, D.G., Hermo, L., and Robaire, B. (1993) Developmental changes in epithelial cadherin messenger ribonucleic acid and immunocytochemical localization of epithelial cadherin during postnatal epididymal development in the rat. Endocrinology 132:1115.

    Article  PubMed  CAS  Google Scholar 

  • Cyr D.G., Robaire B., Hermo L. (1995) Structure and turnover of junctional complexes between principal cells of the rat epididymis. Micros. Res. Tech. 30:54.

    Article  CAS  Google Scholar 

  • DeBellefeuille S, Hermo L, and Cyr D.G. (1999) Regulation of catenin alpha in the rat epididymis. Mol. Biol. Cell. 10(suppl):L114.

    Google Scholar 

  • De Melker, A.A. and Sonnenberg, A. (1999) Integrins: alternative splicing as a mechanism to regulate ligand binding and integrin signaling events. Bioessays 21:499.

    Article  PubMed  Google Scholar 

  • Denker, B.M. and Nigam, S.K. (1998) Molecular structure and assembly of the tight junction. Amer. J. Physiol. 274:F1.

    PubMed  CAS  Google Scholar 

  • Denker, B.M., Sana, C, Khawaja, S., and Nigam, S.K. (1996) Involvement of a hetero-trimeric G protein a subunit in tight junction biogenesis. J. Biol. Chem. 271:25750.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, G.M. (1993) A golden age for adhesion. Cell Adhesion Commun., 1:1.

    Article  CAS  Google Scholar 

  • Elgang, C, Eckert, R., Lichtenberg-Frate, H., Butterweck, A., Traub, O., Klein, R.A., Hulser, D.F., and Willecke, K. (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected Hela cells. J. Cell Biol. 129:805.

    Article  Google Scholar 

  • Fanning, A.S., Jameson, B.J., Jesaitis, L.A., and Anderson, J.M. (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J.Biol. Chem. 273:29745.

    Article  PubMed  CAS  Google Scholar 

  • Friend, D.S., and Gilula, N.B. (1972) Variations in tight junctions and gap junctions in mammalian tissues. J. Cell Biol. 53:758.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto K., Nagafuchi, A., Tsukita, S., Kuraoka, A., Ohokuma A., and Shibata, Y. (1997) Dynamics of connexins, E-cadherin and alpha catenin on cell membranes during gap junction formation. J. Cell Sci. 110:311.

    PubMed  CAS  Google Scholar 

  • Furuse, M., Fujita, K., Hiragi, T., Fujimoto, K. and Tsukita, S. (1998a) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141:1539.

    Article  PubMed  CAS  Google Scholar 

  • Fumse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., Tsukita, S., and Tsukita, S. (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 123:1777.

    Article  Google Scholar 

  • Furuse, M., Itoh, M., Hirase, T., Nagafuchi, A., Yonemura, S., Tsukita, Sa., and Tsukita, Sh. (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J. Cell Biol. 127:1617.

    Article  PubMed  CAS  Google Scholar 

  • Furuse, M., Sasaki, H., Fujimoto, K., and Tsukita, S. (1998b) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J. Cell Biol. 143:391.

    Article  PubMed  CAS  Google Scholar 

  • Furuse, M., Sasaki, H., and Tsukita, S. (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J. Cell Biol. 147:891.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, D.E., Alonso D.F., Yoshiji, H., and Thorgeirsson, U.P. (1997) Tissue inhibitors of metalloproteases: structure, regulation and biological function. Eur. J. Cell. Biol. 74:111.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Amaro, R. and Sanchez-Madrid, F. (1999) Cell adhesion molecules: selectins and integrins. Crit. Rev. Immunol. 19:389.

    PubMed  CAS  Google Scholar 

  • Goodenough, D.A., Goliger, J.A., and Paul, D.L. (1996) Connexins, connexons, and intercellular communication. Ann. Rev. Biochem. 65:475.

    Article  PubMed  CAS  Google Scholar 

  • Gow, A., Southwood, CM., Li, J.S., Pariali, M., Riordan, G.P., Brodie, S.E., Danias, J., Bronstein, J.M., Kachar, B., and Lazzarini, R.A. (1999) CNS myelin and Sertoli cell tight junction strands are absent in OSP/claudin-11 null mice. Cell 99:649.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, M., Dufresne, J., Hermo, L. and Cyr, D.G. (2000) Claudin-1 is not restricted to tight junctions in the epididymis and is regulated by androgens. Endocrinology 142:854–863.

    Article  Google Scholar 

  • Guger, K.A. and Gumbiner, B.M. (1995) ß-catenin has Wnt-like activity and mimics the Nieuwkoop signaling center in Xenopus dorsal-ventral patterning. Dev. Biol. 172:115.

    Article  PubMed  CAS  Google Scholar 

  • Gumbiner, B.M. (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84: 345.

    Article  PubMed  CAS  Google Scholar 

  • Gurnbiner, B.M. (2000) Regulation of cadherin adhesive activity. J. Cell Biol. 148:399.

    Article  Google Scholar 

  • Haskins, J., Gu, L., Wittchen, E.S., Hibbard, J., and Stevenson, B.R. (1998) ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J. Cell Biol. 141:199.

    Article  PubMed  CAS  Google Scholar 

  • Hemler, M.E. (1998) Integrin associated proteins. Curr. Opin. Cell Biol., 10:578.

    Article  PubMed  CAS  Google Scholar 

  • Hinton, B.T. (1983) The epithelium of the caput epididymidis: its permeability and its role in the formation of a specialized microenvironment. Ann. NY Acad. Sci., 383:462.

    Article  Google Scholar 

  • Hinton, B.T. (1985) Physiological aspects of the blood-epididymis barrier. In: Male Fertility and its Regulation. Lobl, T.J. and Hafez, E.S.E. (eds.) MTP Press Ltd., Boston, p.371.

    Google Scholar 

  • Hinton, B.T. and Howards, S.S. (1981) Permeability characteristics of the epithelium in the rat caput epididymidis. J. Reprod. Fertil. 63:95.

    Article  PubMed  CAS  Google Scholar 

  • Hinton, B.T. and Howards, S.S. (1982) The rat testis and epididymis can transport 3H-3–0-methyl-D-glucose, 3H-inositol, and 3H-a-aminoisobutyric acid across its epithelia in vivo. Biol. Reprod. 27:1181.

    Article  PubMed  CAS  Google Scholar 

  • Hinton, B.T., and Palladino, M. A. (1995) Epididymal epithelium: Its contribution to the formation of a luminal fluid microenvironment. Micros. Res. Tech. 30:67.

    Article  CAS  Google Scholar 

  • Hirase, T., Staddon, J.M., Saitou, M., Ando-Akatsuka, Y., Itoh, M., Furuse, M., Fujimoto, K., Tsukita, S., and Rubin, L.L. (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell Sci. 110:1603.

    PubMed  CAS  Google Scholar 

  • Holton, J.L., Kenny, T.P., Legan, P.K., Collins, J.E., Keen, J.N., Sharma, R., and Garrod, D.R. (1990) Desmosomal glycoproteins 2 and 3 (desmocollins) show N-terminal similarity to calcium-dependent cell-cell adhesion molecules. J. Cell Sci. 97:239.

    PubMed  CAS  Google Scholar 

  • Hughes, P.E. and Pfaff, M. (1998) Integrin affinity modulation. Trends Cell Biol. 8:359.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R.O. (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11.

    Article  PubMed  CAS  Google Scholar 

  • Imamura, Y., Itoh, M, Maeno, Y., Tsukita, S., and Nagafuchi, A. (1999) Functional domains of a-catenin required for the strong state of cadherin-based cell adhesion. J. Cell Biol. 144:1311.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, M, Furuse, M., Morita, K., Kubota, K., Saitou, M, and Tsukita, S. (1999a) Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J. Cell Biol. 147:1351.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, M., Morita, K., and Tsukita, Sh. (1999b) Characterization of ZO-2 as a MAGUK family member associated with tight and adherens junctions with a binding affinity to occludin and a-catenin. J. Biol. Chem. 274:5981.

    Article  PubMed  CAS  Google Scholar 

  • James, M.J., Brooks, D.E., and Snoswell, A.M. (1981) Kinetics of carnitine uptake by rat epididymal cells. FEBS Lett. 126:53.

    Article  PubMed  CAS  Google Scholar 

  • Kaibuchi, K., Kuroda, S., Fukata, M., and Nakagawa, A. (1999) Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Curr. Opin. Cell Biol. 11:591.

    Article  PubMed  CAS  Google Scholar 

  • Kanemitsu, M.Y., Loo, L.W.N., Simon, S., Lau, A.F., and Eckhart, W. (1997) Tyrosine phosphorylation of connexin 43 by v-Src is mediated by SH2 and SH3 domain interactions. J. Biol. Chem. 272 : 22824.

    Article  PubMed  CAS  Google Scholar 

  • Keon, B., Schafer, S., Kuhn, C, Grund, C, and Franke, W.W. (1996) Symplekin, a novel type of tight junctional plaque protein. J. Cell Biol. 134:1003.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi, A. (2000) Regulation of P-catenin signaling in the Wnt pathway. Biochem. Biophys. Res. Commun. 268 :243.

    CAS  Google Scholar 

  • Kirchoff, C. (1999) Gene expression in the epididymis. Int. Rev. Cytol. 188 :133.

    Article  Google Scholar 

  • Koch, M., Olson, P.E., Albus, A., Jin, W., Hunter, D.D., Brunken, W.J., Burgeson, R.E., and Champliaud, M.-F. (1999) Characterization and expression of the laminin ?3 chain: a novel, non-basement membrane-associated, laminin chain. J. Cell Biol. 145:605.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, N.M. and Gilula, N.B. (1996) The gap junction communication channel. Cell 84:381.

    Article  PubMed  CAS  Google Scholar 

  • Levy, S. and Robaire, B. (1999) Segment-specific changes with age in the expression of junctional proteins and the permeability of the blood-epididymis barrier in rats. Biol. Reprod. 60:1392.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, L.M. and Sulimovici, S. (1975) The distribution of radioactive myoinositol in the reproductive tract of the male rat. J. Reprod. Fert. 43:355.

    Article  CAS  Google Scholar 

  • Malinda, K.M. and Kleinman, H.K. (1996) The laminins. Int. J. Biochem. Cell Biol. 28:957.

    Article  CAS  Google Scholar 

  • Martin-Padura, I., Lostaglio, S., Schneemann, M., Williams, L., Romano, M., Fruscella, P., Panzeri, C., Stoppacciaro, A., Ruco, L., Villa, A., Simmons, D., and Dejana, E. (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol. 142:117.

    Article  PubMed  CAS  Google Scholar 

  • Mege, R.M., Matsuzaki, F., Gallin, W.F., Goldher, J.I., Cunningham, B.A., Edelman, G.M. (1988) Construction of epitheliod sheets by transfection of mouse sarcoma cells with cDNAs for chicken cell adhesion molecules. Proc. Natl. Acad. Sci. USA 85:7274.

    Article  PubMed  CAS  Google Scholar 

  • Mitic, L.L. and Anderson, J.M. (1998) Molecular architecture of tight junctions. Ann. Rev. Physiol., 60:121.

    Article  CAS  Google Scholar 

  • Morita, K., Furuse, M., Fujimoto, K., and Tsukita, S. (1999) Claudin multigene family encoding four transmembrane domain protein components of tight junction strands. Proc. Natl. Acad. Sci. USA 96: 511.

    Article  PubMed  CAS  Google Scholar 

  • Moroi, S., Saitou, M., Fujimoto, K., Sakakibara, A., Furuse, M., Yoshida, O., and Tsukita, Sh. (1998) Occludin is concentrated at tight junctions of mouse/rat but not human/guinea pig Sertoli cells in testes. Am. J. Physiol. 274:C1708.

    PubMed  CAS  Google Scholar 

  • Nagase,H., and Woessner, J.F. (1999) Matrix metalloproteinases. J.Biol. Chem. 274:21491.

    Article  PubMed  CAS  Google Scholar 

  • Nigam, S.K., Rodriguez-Boulan, E., and Silver, R.B. (1992) Changes in intracellular calcium during the development of epithelial polarity and junctions. Proc. Natl. Acad. Sci. USA 89:6162.

    Article  PubMed  CAS  Google Scholar 

  • Nigam, S.K., Denisenko, N., Rodriguez-Boulan, E., and Citi, S. (1991) The role of phosphorylation in development of tight junctions in cultured renal epithelial (MDCK) cells. Biochem. Biophys. Res. Commun. 181:548.

    Article  CAS  Google Scholar 

  • Owens, D.W., McLean, G.W., Wyke, A.W., Paraskeva, C, Parkinson, E.K., Frame, M.C., Brunton, V.G. (2000) The catalytic activity of the Src family kinases is required to disrupt cadherin-dependent cell-cell contacts. Mol. Biol. Cell 11:51.

    PubMed  CAS  Google Scholar 

  • Peifer, M., Pai, L.M., and Casey, M. (1994) Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. Dev. Biol. 166:543.

    Article  PubMed  CAS  Google Scholar 

  • Pelletier, R.-M. (1995) Freeze-fracture study of cell junctions in the epididymis and vas deferens of a seasonal breeder: The mink (Mustela vison). Micros. Res. Tech. 30:37.

    Article  CAS  Google Scholar 

  • Pelletier, R.-M. (1988) Cyclic modulation of Sertoli junctional complexes in a seasonal breeder: the mink (Mustela vison). Amer. J. Anat. 183:68.

    Article  PubMed  CAS  Google Scholar 

  • Pelletier, R.-M. and Cyr, D.G. (1993) Maintenance of the blood-epididymal and blood-vas deferens barriers despite seasonal permeability changes in the blood-testis barrier of the mink (Mustela vison). Proceedings of the Xllth North American Testis Workshop, abs. 24, p.68.

    Google Scholar 

  • Ponting, C.P., Phillips, C., Davies, K.E., and Blake, D.J. (1997) PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays 19:469.

    Article  PubMed  CAS  Google Scholar 

  • Rajasekaran, A.K., Hojo, M., Huima, T., and Rodriguez-Boulan, E. (1996) Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J. Cell Biol., 132:451.

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe M.J., Rubin, L.L., and Staddon, J.M. (1997) Dephosphorylation of the cadherin-associated pl00/pl20 proteins in response to activation of protein kinase C in epithelial cells. J. Biol. Chem. 272: 31894.

    Article  PubMed  CAS  Google Scholar 

  • Risley, M.S. (2000) Connexin gene expression in seminiferous tubules of the Sprague-Dawley rat. Biol. Reprod. 62:748.

    Article  PubMed  CAS  Google Scholar 

  • Robaire, B., Scheer, H., and Hachey, C. (1981) Regulation of epididymal steroid metabolizing enzymes. In: G. Jagiello, and H.J. Vogel, eds., Bioregulators of Reproduction. Academic Press, New York p 487.

    Google Scholar 

  • Rudolph-Owen, L.A., Cannon, P., and Matrisian, L.M. (1998) Overexpression of the matrix metalloproteinase matrilysin results in premature mammary gland differentiation and male infertility. Mol. Biol. Cell 9: 421.

    PubMed  CAS  Google Scholar 

  • Saha, C., Nigam, S.K., and Denker, B.M. (1998) Involvement of Gαi2 in the maintenance and biogenesis of epithelial cell tight junctions. J. Biol. Chem. 273:21629.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, M., Fujimoto, K., Doi, Y., Itoh, M., Fujimoto, T., Furuse, M., Takano, H., Noda, T., and Tsukita, Sh. (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J. Cell Biol., 141:397.

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara, A., Furuse, M., Saitou, M., Ando-Akatsuka, Y., and Tsukita, Sh. (1997) Possible involvement of phosphorylation of occludin in tight junction formation. J. Cell Biol. 137:1393.

    Article  PubMed  CAS  Google Scholar 

  • Scheer, H. and Robaire, B. (1980) Steroid D4–5α-reductase and 3ß-hydroxysteroid dehydrogenase in the rat epididymis during development. Endocrinology 107:948.

    Article  PubMed  CAS  Google Scholar 

  • Schneeberger, E.E. and Lynch, R.D. (1992) Structure, function, and regulation of cellular tight junctions. Amer. J. Physiol. 262:L647.

    PubMed  CAS  Google Scholar 

  • Schnoenwaelder, S.M. and Burridge, K. (1999) Bidirectional signaling between the cytoskeleton and integrins. Curr. Opin. Cell Biol. 11:274.

    Article  Google Scholar 

  • Seiler, P., Cooper, T.G., Yeung, C.-H., and Nieschlag, E. (1999) Regional variation in macrophage antigen expression by murine epididymal basal cells and their regulation by testicular factors. J. Androl. 20:738.

    PubMed  CAS  Google Scholar 

  • Seiler, P., Wenzel, I., Wagenfeld, A., Yeung, C.-H., Nieschlag, E., and Cooper, T.G. (1998)The appearance of basal cells in the developing murine epididymis and their temporal expression of macrophage antigens. Int. J. Androl. 20:217.

    Article  Google Scholar 

  • Spring, K. (1998) Routes and mechanisms of fluid transport by epithelia. Annu. Rev.Physiol. 60:105.

    Article  PubMed  CAS  Google Scholar 

  • Staehelin, L.A. (1974) Structure and function of intercellular junctions. Int. Rev. Cytol. 39:191.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, M.S., and McNutt, P.M. (1999) Cadherins and their connections: adhesion junctions have broader functions. Curr. Opin. Cell Biol. 11:554.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, B.R. and Keon, B.H. (1998) The tight junction: morphology to molecules. Ann. Rev. Cell Dev. Biol. 14:89.

    Article  CAS  Google Scholar 

  • Stuart, R. O., Sun, A., Bush, K.T., and Nigam, S.K. (1996) Dependence of epithelial intercellular biogenesis on thapsigargin-sensitive intracellular calcium stores.J. Biol. Chem. 271: 13636.

    Article  PubMed  CAS  Google Scholar 

  • Stuart, R. O., Sun, A., Panichas, M., Hebert, S.C., Brenner, B.M., and Nigam, S.K. (1994) Critical role for intracellular calcium in tight junction biogenesis. J. Cell Physiol. 159:423.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, F., and Nagano, T. (1976) Changes in occluding tight junctions of epididymal epithelium in the developing and gonadectomized mammals. J. Cell Biol. 70:101 A.

    Google Scholar 

  • Suzuki, F., and Nagano, T. (1978) Development of tight junctions in the caput epididymal epithelium of the mouse. Dev. Biol. 63:321.

    Article  PubMed  CAS  Google Scholar 

  • Swenson, K.I., Piwnica-Worms, H., McNamee, H., and Paul, D.L. (1990) Tyrosine phosphorylation of the gap junction protein connexin43 is required for the pp60v-src-induced inhibition of communication. Cell Regul. 13:989.

    Google Scholar 

  • Takeichi, M. (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451.

    Article  PubMed  CAS  Google Scholar 

  • Tetsu, O. and McCormick, F. (1999) Beta-catenin regulates expression of cyclin Dl in colon carcinoma cells. Nature 398:422.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe, C.J., Schlesinger, A., and Bowerman, B. (2000) Wnt signalling in Caenorhabditis elegans: regulating repressors and polarizing the cytoskeleton. Trends Cell Biol., 10:10.

    Article  PubMed  Google Scholar 

  • Timpl, R. and Brown, J.C. (1996) Supramolecular assembly of basement membrane. Bioessays 18:123.

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto, T. and Nigam, S.K. (1997) Tight junction proteins form large complexes and associate with the cytoskeleton in an ATP depletion model for reversible junction assembly. J. Biol. Chem. 272:16133.

    Article  PubMed  CAS  Google Scholar 

  • Tsukita, Sh. and Furuse, M. (1999) Occludin and claudins in tight junction strands: leading or supporting players? Trend. Cell Biol. 9:268.

    Article  CAS  Google Scholar 

  • Tsukita, Sh., Furuse, M., and Itoh, M. (1999) Structural and signaling molecules come together at tight junctions. Curr. Opin. Cell Biol. 11:628.

    Article  Google Scholar 

  • Turner, T.T., Giles, R.D., and Howards, S. S. (1981) Effects of oestradiol valerate on the rat blood-testis and blood-epididymal barrier to [3H] inulin. J. Reprod. Fert., 63:355.

    Article  CAS  Google Scholar 

  • Turner, T.T. and Howards, S.S. (1985) The tenacity of the blood-testis and blood-epididymal barriers. In: Male Fertility and its Regulation. T.J. Lobl and E.S.E. Hafez, eds. MTP Press Ltd, Lancaster, p 383.

    Chapter  Google Scholar 

  • Voigt, S., Gossrau, R., Baum, O., Löster, K., Hofman, W., and Reutter, W. (1995) Distribution and quantification of alpha 1-integrin subunit in rat organs. Histochem. J. 27:123.

    Article  PubMed  CAS  Google Scholar 

  • Volberg, T., Zick, Y., Dror, R., Sabanay, I., Gilon, C., Levitzki, A., and Geiger, B. (1992) The effect of tyrosine-specific protein phosphorylation on the assembly of adherens-type junctions. EMBO J. 11:1733.

    PubMed  CAS  Google Scholar 

  • Watabe-Uchida, M., Uchida, N., Imamura, Y., Nagafuchi, A., Fujimoto, K., Uemura, T., Vermeulen, S., van Roy, F., Adamson, E.D., and Takeichi, M. (1998) α-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J. Cell Biol. 142:847.

    Article  PubMed  CAS  Google Scholar 

  • White, T.W. and Paul, D.L. (1999) Genetic diseases and gene knockouts reveal diverse connexin functions. Ann. Rev. Physiol. 61: 283.

    Article  CAS  Google Scholar 

  • Wilson, C.L., Heppner, K.J., Rudolph, L.A., and Matrisian, L.M. (1995) The metalloproteinase matrilysin is preferentially expressed by epithelial cells in a tissue-restricted pattern in the mouse. Mol. Biol. Cell 6:851.

    PubMed  CAS  Google Scholar 

  • Yap, A.S., Mullin, J.M., and Stevenson, B.R. (1998) Molecular analysis of tight junction physiology: insights and paradoxes. J. Membr. Biol. 163:159.

    Article  PubMed  CAS  Google Scholar 

  • Yeung, C.-H., Nashan, D., Sorg, C., Oberpenning, F., Shulze, H., Nieschlag, E., and Cooper, T.G. (1994) Basal cells of the epididymis-antigenic and ultrastructural similarities to tissue-fixed macrophages. Biol. Reprod. 50:917.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cyr, D.G., Finnson, K., Dufresne, J., Gregory, M. (2002). Cellular Interactions and the Blood-Epididymal Barrier. In: Robaire, B., Hinton, B.T. (eds) The Epididymis: From Molecules to Clinical Practice. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0679-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0679-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5191-7

  • Online ISBN: 978-1-4615-0679-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics