Advertisement

Changes in Specific Sperm Proteins During Epididymal Maturation

  • Patricia S. Cuasnicú
  • Débora J. Cohen
  • Diego A. Ellerman
  • Dolores Busso
  • Vanina G. Da Ros
  • Mauro M. Morgenfeld

Abstract

Mammalian spermatozoa that leave the testis do not have the ability to recognize and fertilize an egg; they require a maturation process that takes place while they are passing through the epididymis. Transit through this organ confers on sperm the capacity for vigorous motility, and the ability to become capacitated, undergo the acrosome reaction, interact with the zona pellucida (ZP), and bind to and fuse with the egg plasma membrane (Cooper, 1986; Bedford, 1990; Yanagimachi, 1994).

Keywords

Zona Pellucida Acrosome Reaction Human Epididymal Protein Epididymal Sperm Testicular Sperm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, E.A.C., Huovila, A.P.J., Sutherland, A.E., Stephens, L.E., Calarco, P.G., Shaw, L.M., Mercurio, A.M., Sonnenberg, A., Primakoff, P., Myles, D.G. and White, J.M., 1995, Mouse egg integrin α6β1 functions as a sperm receptor, Cell81:1095.PubMedCrossRefGoogle Scholar
  2. Baker, C.S., Magargee, S.F. and Hammerstedt, R.H., 1993, Cholesterol transfer proteins from ram cauda epididymal and seminal plasma, Biol. Reprod48:P-111.Google Scholar
  3. Bedford, J.M., 1990, Sperm dynamics in the epididymis, in: Gamete Physiology,R.H. Asch, J.P. Balmaceda, I. Johnson, ed, Serono Symposia, Norwell, MA, USA.Google Scholar
  4. Begin, S., Berube, B., Boue, F. and Sullivan, R., 1995, Comparative immunoreactivity of mouse and hamster sperm proteins recognized by an anti-P26h hamster sperm protein, Mol. Reprod. Dev41:249.PubMedCrossRefGoogle Scholar
  5. Berubé, B. and Sullivan, R., 1994, Inhibition of in vivo fertilization by active immunization of male hamsters against a 26-kDa sperm glycoprotein, Biol. Reprod51:1255.PubMedCrossRefGoogle Scholar
  6. Blaquier, J.A., Cameo, M.S., Stephany, D., Piazza, A., Tezón, J.G. and Sherins, R., 1987, Abnormal distribution of epididymal antigens on spermatozoa from infertile men, Fertil. Steril47:302.PubMedGoogle Scholar
  7. Blobel, C.P., Myles, D., Primakoff, P. and White, J., 1990, Proteolytic processing of a protein involved in sperm-egg fusion correlates with acquisition of fertilization competence. J. Cell Biol111:69.PubMedCrossRefGoogle Scholar
  8. Blobel, C.P., Wolfsberg, T.G., Turck, C.W., Myles, D.G., Primakoff, P. and White, J.M., 1992, A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion, Nature356:248.PubMedCrossRefGoogle Scholar
  9. Boue, F., Lassalle, B., Duquenne, C., Villaroya, S., Testart, J., Lefevre, A. and Finaz, C., 1992, Human sperm proteins from testicular and epididymal origin that participate in fertilization: Modulation of sperm binding to zona-free hamster oocytes, using monoclonal antibodies, Mol. Reprod. Dev33:470.PubMedCrossRefGoogle Scholar
  10. Boué F., Bérubé, B., De Lamirande, E., Gagnon, C. and Sullivan, R., 1994, Human sperm-zona pellucida interaction is inhibited by an antiserum against a hamster sperm protein, Biol. Reprod51:577.PubMedCrossRefGoogle Scholar
  11. Boué, F., Duquenne, C., Lassalle, B., Lefevre, A. and Finaz, C., 1995, FLB1, a human protein of epididymal origin that is involved in the sperm-oocyte recognition process, Biol. Reprod52:267.PubMedCrossRefGoogle Scholar
  12. Boué, F., Blais, J. and Sullivan, R., 1996, Surface localization of P34H, an epididymal protein, during maturation, capacitation, and acrosome reaction of human spermatozoa, Biol. Reprod54:1009.PubMedCrossRefGoogle Scholar
  13. Boué, F. and Sullivan, R., 1996, Cases of human infertility are associated with the absence of P34H, an epididymal sperm antigen, Biol. Reprod54:1018.PubMedCrossRefGoogle Scholar
  14. Bozas, S.E., Kirszbaum, L., Sparrow, R.L. and Walker, I.D., 1993, Several vascular complement inhibitors are present on human sperm, Biol. Reprod48:503.PubMedCrossRefGoogle Scholar
  15. Brooks, D.E. and Higgins, S.J., 1980, Characterization and androgen-dependence of proteins associated with luminal fluid and spermatozoa in the rat epididymis, J. Reprod. Fertil59:363.PubMedCrossRefGoogle Scholar
  16. Brooks, D.E., Means, A.R., Wright, E.J., Singh, S.P., and Tiver, K.K, 1986, Molecular cloning of the cDNA for androgen-dependent sperm-coating glycoproteins secreted by the rat epididymis, Eur.J.Biochem161:13.PubMedCrossRefGoogle Scholar
  17. Cameo, M.S. and Blaquier, J.A., 1976, Androgen-controlled specific proteins in rat epididymis, J. Endocr69:317.CrossRefGoogle Scholar
  18. Charest, N.J., Joseph, D.R., Wilson, E.M., and French, F.S, 1988, Molecular cloning of complementary deoxyribonucleic acid for an androgen-regulated epididymal protein: sequence homology with metalloproteins, Mol. Endo2(10):999.CrossRefGoogle Scholar
  19. Cho, C., O’Dell Bunch, D., Faure, J.E., Goulding, E.H., Eddy, E.M., Primakoff, P., Myles, D.G., 1998, Fertilization defects in sperm from mice laking fertilin β, Science,281:1857.PubMedCrossRefGoogle Scholar
  20. Cohen, D.J., Munuce, M.J. and Cuasnicú, P.S., 1996, Mammalian sperm-egg fusion: The development of rat oolemma fusibility during oogenesis involves the appearance of binding sites for sperm protein“DE”, Biol. Reprod55:200.PubMedCrossRefGoogle Scholar
  21. Cohen, D.J., Ellerman, D.A., Busso, D., Morgenfeld, M.M., Piazza, A.D., Hayashi, M., Young, E., Kasahara, M., Cuasnicu, P.S., 2001, Evidence that human epididymal protein ARP plays a role in gamete fusion through complementary sites on the surface of the human egg, Biol. Reprod(In Press).Google Scholar
  22. Cohen, D.J., Rochwerger, L., Ellerman, D.A., Morgenfeld, M., Busso, D. and Cuasnicu, P.S., 2000a, Relationship between the association of rat epididymal protein DE with spermatozoa and the behavior and function of the protein, Mol. Reprod. Dev56:180.PubMedCrossRefGoogle Scholar
  23. Cohen, D.J., Ellerman, D.A. and Cuasnicú, P.S., 2000b, Mammalian sperm-egg fusion: evidence that epididymal protein DE plays a role in mouse gamete fusion, Biol. Reprod63:462.PubMedCrossRefGoogle Scholar
  24. Cooper, T.G., 1986, The Epididymis, Sperm Maturation and Fertilization,Springer Verlag, Berlin.CrossRefGoogle Scholar
  25. Cornwall, G.A., Tulsiani, D.R. and Orgebin-Crist, M.C., 1991, Inhibition of the mouse sperm surface alpha-D-mannosidase inhibits sperm-egg binding in vitro, Biol. Reprod44:913.PubMedCrossRefGoogle Scholar
  26. Cowan, A.E., Myles, D.G. and Koppel, D.E., 1991, Migration of the guinea pig sperm membrane protein PH-20 from one localized surface domain to another does not occur by a simple diffusion-trapping mechanism, Dev. Biol144:189.PubMedCrossRefGoogle Scholar
  27. Cuasnicú, P.S., Conesa, D., Rochwerger, L., 1990, Potential contraceptive use of an epididymal protein that participates in fertilization, in: Gamete Interaction: Prospects forlimmunocontraception,N.J. Alexander, D. Griffin, J.M. Spieler, G.M.H. Waites, ed., Wiley-Liss, New York.Google Scholar
  28. Dyson, A.L. and Orgebin-Crist, M.C., 1973, Effect of hypophysectomy, castration and androgen replacement upon fertilizing ability of rat epididymal spermatozoa. Endocrinology93:391.PubMedCrossRefGoogle Scholar
  29. Eccleston, E.D., White, T.W., Howard, J.B. and Hamilton, D.W., 1994, Characterization of a cell surface glycoprotein associated with maturation of rat spermatozoa, Mol. Reprod. Dev37:110.PubMedCrossRefGoogle Scholar
  30. Eddy, E.M., O’Brien, D.A., 1994, The spermatozoon, in: The Physiology of Reproduction,E. Knobil, J.D. Neill, ed., Raven Press, New York.Google Scholar
  31. Ellerbrock, K., Pera, I., Hartung, S. and Ivell, R., 1994, Gene expression in the dog epididymis: A model for human epididymal function, Int. J. Androl17:314.PubMedCrossRefGoogle Scholar
  32. Ellerman, D.A., Brantua, V.S., Martinez, S.P., Cohen, D.J., Conesa, D. and Cuasnicu, P.S., 1998, Potential contraceptive use of epididymal proteins: immunization of male rats with epididymal protein DE inhibits sperm fusion ability, Biol. Reprod59:1029.PubMedCrossRefGoogle Scholar
  33. Evans, J.P., Kopf, G.S. and Schultz, R.M., 1997, Characterization of the binding of recombinant mouse sperm fertilin β subunit to mouse eggs: Evidence for adhesive activity via an egg β1 integrin-mediated interaction, Dev. Biol187:79.PubMedCrossRefGoogle Scholar
  34. Focarelli, R., Giuffrida, A. and Rosati, F., 1995, Changes in the sialyglycoconjugate distribution on the human sperm surface during in vitro capacitation: partial purification of a 20 kDa sialyglycoprotein of capacitated spermatozoa, Mol. Hum. Reprod2:2755.Google Scholar
  35. Focarelli, R., Giuffrida, A., Capparelli, S., Scibona, M., Menchini Fabris, F., Francavilla, F., Francavilla, S. and Delia Giovampaola, C., 1998, Specific localization in the equatorial region of gp20, a 20 kDa sialylglycoprotein of the capacitated human spermatozoon acquired during epididymal transit which is necessary to penetrate zona-free hamster eggs, Mol. Hum. Reprod4:119.PubMedCrossRefGoogle Scholar
  36. Frayne, J., Jury, J.A., Barker, H.L., Perry, A.C., Jones, R. and Hall, L., 1998, Macaque MDC family of proteins: sequence analysis, tissue distribution and processing in the male reproductive tract, Mol. Hum. Reprod4:429.PubMedCrossRefGoogle Scholar
  37. Fröhlich, O. and Young, L.G., 1996, Molecular cloning and characterization of EPI-1, the major protein in chimpanzee (Pan troglodytes) cauda epididymal fluid, Biol. Reprod54:857.PubMedCrossRefGoogle Scholar
  38. Garrett, S.H., Garrett, J.E. and Douglass, J., 1991, In situ histochemical analysis of region-specific gene expression in the adult rat epididymis, Mol. Reprod. Dev30:1.PubMedCrossRefGoogle Scholar
  39. Gaudreault, C., Le gare, C., Berube, B. and Sullivan, R., 1999, Hamster sperm protein, p26h: a member of the short-chain dehydrogenase/reductase superfamily, Biol. Reprod61:264.PubMedCrossRefGoogle Scholar
  40. Griswold, M.D., Roberts, K. and Bishop, P., 1986, Purification and characterization of a sulfated glycoprotein secreted by Sertoli cells, Biochemistry25:7265.PubMedCrossRefGoogle Scholar
  41. Haendler, B., Kratzschmar, J., Theuring, F. and Schleuning, W.D., 1993, Transcripts for cysteine-rich secretory protein-1 (CRISP-1; DE/AEG) and the novel related CRISP-3 are expressed under androgen control in the mouse salivary gland, Endocrinology133:192.PubMedCrossRefGoogle Scholar
  42. Hayashi, M., Fujimoto, S., Takano, H., Ushiki, T., Abe, K., Ishikura, H., Yoshida, M., Kirchhoff, C., Ishibashi, T. and Kasahara, M., 1996, Characterization of a human glycoprotein with potential role in sperm-egg fusion: cDNA cloning, immunohistochemical localization, and chromosomal assigment of the gene (AEGL1), Genomics32:367.PubMedCrossRefGoogle Scholar
  43. Hermo, L., Wright, J., Oko, R., and Morales, C.R., 1991, Role of epithelial cells of the male excurrent duct system of the rat in the endocytosis or secretion of sulfated glycoprotein-2 (clusterin). Biol. Reprod44:1113.PubMedCrossRefGoogle Scholar
  44. Hubbard, A.L., Bartles, J.R. and Braiterman, L.T., 1985, Identification of rat hepatocyte plasma membrane proteins using monoclonal antibodies, J. Cell Biol100:1115.PubMedCrossRefGoogle Scholar
  45. Hunnicutt, C.R., Primakoff, P. and Myles, D.G., 1996, Sperm surface protein PH-20 is bifunctional: One activity is a hyaluronidase and a second, distinct activity is required in secondary sperm-zona binding, Biol. Reprod55:80.PubMedCrossRefGoogle Scholar
  46. Hunnicutt, G.R., Koppel, D.E. and Myles, D.G., 1997, Analysis of the process of localization of fertilin to the sperm posterior head plasma membrane domain during sperm maturation in the epididymis, Dev. Biol191:146.PubMedCrossRefGoogle Scholar
  47. Jones, R., Shalgi, R., Holland, J. and Phillips, D.M., 1990, Topographical rearrangement of a plasma membrane antigen during capacitation of rat spermatozoa in vitro. Dev. Biol139:349.PubMedCrossRefGoogle Scholar
  48. Jury, J.A., Frayne, J. and Hall, L., 1997, The human fertilin β gene is non-functional: Implications for its proposed role in fertilization, Biochem. J321:577.PubMedGoogle Scholar
  49. Jury, J.A., Frayne, J. and Hall, L., 1998, Sequence analysis of a variety of primate fertilin alpha genes: evidence for non-functional genes in the gorilla and man, Mol. Reprod. Dev51:92.PubMedCrossRefGoogle Scholar
  50. Kanekura, T., Miyauchi, T., Tashiro, M. and Muramatsu, T., 1991, Basigin, a new member of the immunoglobulin superfamily: genes in different mamalian species, glycosilation changes in the molecule from adult organs and possible variation in the N-terminal sequences, Cell Struct. Funct16:23.PubMedCrossRefGoogle Scholar
  51. Kirchhoff, C., Osterhoff, C., Habben, I. and Ivell, R., 1990, Cloning and analysis of mRNAs expressed specifically in the human epididymis, Int. J. Androl13:159.Google Scholar
  52. Kirchhoff, C., Habben, I., Ivell, R. and Krull, N., 1991, A major human epididymis-specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors, Biol. Reprod45:350.PubMedCrossRefGoogle Scholar
  53. Kirchhoff, C., Krull, N., Pera, I. and Ivell, R., 1993, A major mRNA of the human epididymal principal cells, HE5, encodes the leucocyte differentiation CD52 antigen peptide backbone, Mol. Reprod. Dev37:130.CrossRefGoogle Scholar
  54. Kirchhoff, C., 1994, A major messenger ribonucleic acid of the rodent epididymis encodes a small glycosylphosphatidylinositol-anchored lymphocyte surface antigen, Biol. Reprod50:896.PubMedCrossRefGoogle Scholar
  55. Kirchhoff, C., Osterhoff, C. and Young, L.G., 1996, Molecular cloning and characterization of HE-1, a major secretory protein of the human epididymis, Biol. Reprod54:847.PubMedCrossRefGoogle Scholar
  56. Kirchhoff, C., 1996, CD52 is the “major maturation associated” sperm membrane antigen, Mol. Hum. Reprod2:9.PubMedCrossRefGoogle Scholar
  57. Kirchhoff, C. and Hale, G., 1996, Cell-to-cell transfer of glycosylphosphatidylinositol-anchored membrane proteins during sperm maturation, Mol. Reprod. Dev2:177.Google Scholar
  58. Kirchhoff C, Pera I, Derr P, Yeung CH, Cooper T., 1997, The molecular biology of the sperm surface, in: The Fate of theMale Germ Cell,Ivell, Holstein, ed., Plenum Press, New York.Google Scholar
  59. Kirchhoff, C., 1998, Molecular characterization of epidymal proteins, Rev. Reprod3:86.PubMedCrossRefGoogle Scholar
  60. Kirchhoff, C., 1999, Gene expression in the epididymis, Int. Rev. Cytol188:133.PubMedCrossRefGoogle Scholar
  61. Kissinger, C., Skinner, M.K. and Griswold, M.D., 1982, Analysis of Sertoli cell-secreted proteins by two-dimensional gel electrophoresis, Biol. Reprod27:233.PubMedCrossRefGoogle Scholar
  62. Kohane, A.C., Garberi, J.C., Cameo, M.S. and Blaquier, J.A., 1979, Quantitative determination of specific proteins in rat epididymis, J. Steroid. Biochem11:671.PubMedCrossRefGoogle Scholar
  63. Kratzschmar, J., Haendler, B., Eberspaecher, U., Roosterman, D., Donner, P. and Schleuning, W.D., 1996, The human cysteine-rich secretory protein (CRISP) family. Primary structure and tissue distribution of CRISP-1, CRISP-2 and CRISP-3, Eur. J. Biochem236:827.PubMedCrossRefGoogle Scholar
  64. Larson, J.L. and Miller, D.J., 1997, Sperm from a variety of mammalian species express p-1,4-galactosyltransferase on their surface, Biol. Reprod57:442.PubMedCrossRefGoogle Scholar
  65. Law, G.L. and Griswold, M.D., 1994, Activity and form of sulfated glycoprotein 2 (clusterin) from cultured Sertoli cells, testis, and epididymis of the rat, Biol. Reprod50:669.PubMedCrossRefGoogle Scholar
  66. Lea, O.A., Petrusz, P. and French, F.S., 1978, Purification and localization of acidic apididymal glycoprotein (AEG): A sperm coating secreted by the rat epididymis. Int. Androl. Supp2:592.CrossRefGoogle Scholar
  67. Lefevre, B., Ruiz, C., Chokomian, S., Duquenne, C. and Finaz, C., 1997, Characterization and isolation of SOB2, a human sperm protein with a potential role in oocyte membrane binding, Mol. Hum. Reprod3:507.PubMedCrossRefGoogle Scholar
  68. Legare, C., Berube, B., Boue, F., Lefievre, L., Morales, C.R., El-Alfy, M. and Sullivan, R., 1999a, Hamster sperm antigen P26h is a phosphatidylinositol-anchored protein, Mol. Reprod. Dev52:225.PubMedCrossRefGoogle Scholar
  69. Legare, C., Gaudreault, C., St-Jacques, S. and Sullivan, R., 1999b, P34H sperm protein is preferentially expressed by the human corpus epididymidis, Endocrinology140:3318.PubMedCrossRefGoogle Scholar
  70. Lin, Y., Mahan, K., Lathrop, W.F., Myles, D.G. and Primakoff, P., 1994, A hyaluronidase activity of the sperm plasma membrane protein PH-20 enables sperm to penetrate the cumulus cell layer surrounding the egg, J. Cell Biol125:1157.PubMedCrossRefGoogle Scholar
  71. Linder, B., Bammer, S. and Heinlein, U.A.O., 1995, Delayed translation and posttranslational processing of cyritestin, an integral transmembrane protein of the mouse acrosome, Exp. Cell Res221:66.PubMedCrossRefGoogle Scholar
  72. Lu, Q.X. and Shur, B.D., 1997, Sperm from P-l,4-galactosyltransferase-null mice are refractory to ZP3-induced acrosome reactions and penetrate the zona pellucida poorly, Development124:4121.PubMedGoogle Scholar
  73. Martin Ruiz, C., Duquenne, C., Treton, D., Lefevre, A. and Finaz, C., 1998, SOB3, a human sperm protein involved in zona pellucida binding: physiology and biochemical analysis, purification, Mol. Reprod. Dev49:286.PubMedCrossRefGoogle Scholar
  74. Mattmueller, D.R. and Hinton, B.T., 1991, In vivo secretion and association of clusterin (SGP-2) in luminal fluid with spermatozoa in the rat testis and epididymis, Mol. Reprod. Dev30:62.PubMedCrossRefGoogle Scholar
  75. McLaughlin, E.A., Frayne, J., Barker, H.L., Jury, J.A., Jones, R., Ford, W.C. and Hall, L., 1997, Cloning and sequence analysis of rat fertilin α and β--developmental expression, processing and immunolocalization, Mol. Hum. Reprod3:801.PubMedCrossRefGoogle Scholar
  76. Miller, D.J., Macek, M.B. and Shur, B.D., 1992, Complementarity between sperm surface β-1,4-galactosyltransferase and egg-coat ZP3 mediates sperm-egg binding, Nature357:589.PubMedCrossRefGoogle Scholar
  77. Miyauchi, T., Masuzawa, Y. and Muramatsu, T., 1991, The basigin group of the immunoglobulin superfamily: complete conservation of a segment in and around transmembrane domains of human and mouse basigin and chicken HT7 antigen, J. Biochem(Tokyo) 110:770.PubMedGoogle Scholar
  78. Mizuki, N. and Kasahara, M., 1992, Mouse submandibular glands express an androgen-regulated transcript encoding an acidic epididymal glycoprotein-like molecule, Mol. Cell. Endocrinol89:25.PubMedCrossRefGoogle Scholar
  79. Moore, A., Ensrud, K.M., White, T.W., Frethem, C.D. and Hamilton, D.W., 1994, Rat epididymis-specific sperm maturation antigens. I. Evidence that the 26 kD 4E9 antigen found on rat caudal epididymal sperm tail is derived from a protein secreted by the epididymis, Mol. Reprod. Dev37:181.PubMedCrossRefGoogle Scholar
  80. Moore, H.D.M. and Akhondi, M.A., 1996, In vitro maturation of mammalian spermatozoa, Rev. Reprod1:54.PubMedCrossRefGoogle Scholar
  81. Myles, D.G. and Primakoff, P., 1984, Localized surface antigens of guinea pig sperm migrate to new regions prior to fertilization, J. Cell Biol99:1634.PubMedCrossRefGoogle Scholar
  82. Myles, D.G., Hyatt, H. and Primakoff, P., 1987, Binding of both acrosome-intact and acrosome-reacted guinea pig sperm to the zona pellucida during in vitro fertilization. Dev. Biol. 121:559.Google Scholar
  83. Nehme, C.L., Cesario, M.M., Myles, D.G., Koppel, D.E. and Bartles, J.R., 1993, Breaching the diffusion barrier that compartmentalizes the transmembrane glycoprotein CE9 to the posterior-tail plasma membrane domain of the rat spermatozoon, J. Cell Biol120:687.PubMedCrossRefGoogle Scholar
  84. Orgebin-Crist, M.C. and Fournier-Delpech, S., 1982, Sperm-egg interaction.Evidence for maturational changes during epididymal transit, J. Androl3:429.Google Scholar
  85. Osterhoff, C., Kirchhoff, C., Krull, N. and Ivell, R., 1994, Molecular cloning and characterization of a novel human sperm antigen (HE2) specifically expressed in the proximal epididymis, Biol. Reprod50:516.PubMedCrossRefGoogle Scholar
  86. Overstreet, J.W., Lin, Y., Yudin, A.I., Meyers, S.A., Primakoff, P., Myles, D.G., Katz, D.F. and Vandevoort, C.A., 1995, Location of the PH-20 protein on acrosome-intact and acrosome-reacted spermatozoa of cynomolgus macaques, Biol. Reprod52:105.PubMedCrossRefGoogle Scholar
  87. Perez Martinez, S., Conesa, D. and Cuasnicú, P.S., 1995, Potential contraceptive use of epididymal proteins: evidence for the participation of specific antibodies against rat epididymal protein DE in male and female fertility inhibition, J. Reprod. Immunol29:31.PubMedCrossRefGoogle Scholar
  88. Perry, A.C.F., Jones, R. and Hall, L., 1995, The monkey ESP14.6 mRNA, a novel transcript expressed at high levels in the epididymis, Gene153:291.PubMedCrossRefGoogle Scholar
  89. Petruszak, J.A.M., Nehme, C.L. and Bartles, J.R., 1991, Endoproteolytic cleavege in the extracellular domain of the integral plasma membrane protein CE9 precedes its redistribution from the posterior to the anterior tail of the rat spermatozoa during epididymal maturation, J. Cell Biol114:917.PubMedCrossRefGoogle Scholar
  90. Phelps, B.M. and Myles, D.G., 1987, The guinea pig sperm plasma membrane protein, pH-20, reaches the surface via two transport pathways and becomes localized to a domain after an initial uniform distribution. Dev. Biol123:63.PubMedCrossRefGoogle Scholar
  91. Phelps, B.M., Primakoff, P., Koppel, D.E., Low, M.G. and Myles, D.G., 1988, Restricted lateral diffusion of PH-20, a Pi-anchored sperm membrane protein. Science240:1780.PubMedCrossRefGoogle Scholar
  92. Phelps, B.M., Koppel, D.E., Primakoff, P. and Myles, D.G., 1990, Evidence that proteolysis of the surface is an initial step in the mechanism of formation of sperm cell surface domains. J. Cell Biol111:1839.PubMedCrossRefGoogle Scholar
  93. Primakoff, P., Hyatt, H. and Myles, D.G., 1985, A role for the migrating sperm surface antigen PH-20 in guinea pig sperm binding to the egg zona pellucida. J. Cell Biol101:2239.PubMedCrossRefGoogle Scholar
  94. Primakoff, P., Hyatt, H. and Tredick-Kline, J., 1987, Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J. Cell Biol104:141.PubMedCrossRefGoogle Scholar
  95. Rankin, T.L., Tsuruta, K.J., Holland, M.K., Griswold, M.D. and Orgebin-Crist, M.C., 1992, Isolation, immunolocalization, and sperm-association of three proteins of 18, 25, and 29 kilodaltons secreted by the mouse epididymis, Biol. Reprod46:141.Google Scholar
  96. Robaire, B., Syntin, P. and Jervis, K., 2000, The Coming of Age of the Epididymis. In: Testis, Epididymis and Technologies in the Year 2000,.Jegou, B., et al.. ed, Springer-Verlag, New York, NY, 229.Google Scholar
  97. Robitaille, G., Sullivan, R. and Bleau, G., 1991, Identification of epididymal proteins associated with hamster sperm, J. Exp. Zool258:69.PubMedCrossRefGoogle Scholar
  98. Rochwerger, L. and Cuasnicu, P.S., 1992, Redistribution of a rat sperm epididymal glycoprotein after in vivo and in vitro capacitation, Mol. Reprod. Dev31:34.PubMedCrossRefGoogle Scholar
  99. Rochwerger, L., Cohen, D.J. and Cuasnicú, P.S., 1992, Mammalian sperm-egg fusion: The rat egg has complementary sites for a sperm protein that mediates gamete fusion, Dev. Biol153:83.PubMedCrossRefGoogle Scholar
  100. Sanjurjo, C., Dawidowsky, A.R., Cameo, M.S., Gonzalez Echeverria, F. and Blaquier, J.A., 1990, Participation of human epididymal sperm coating antigens in fertilization, J. Androl11:476.PubMedGoogle Scholar
  101. Scully, N.F., Shaper, J.H. and Shur, B.D., 1987, Spatial and temporal expression of cell surface galactosyltransferase during spermatogenesis and epididymal maturation, Dev. Biol124:111.PubMedCrossRefGoogle Scholar
  102. Seulberger, H., Lottspeich, F. and Risau, W., 1990, The inducible blood brain barrier specific molecule HT7 is a novel immunoglobulin-like cell surface glycoprotein, EMBOJ9:2151.Google Scholar
  103. Shamsadin, R., Adham, I.M., Nayernia, K., Heinlein, U.A., Oberwinkler, H. and Engel, W., 1999, Male mice deficient for germ-cell cyritestin are infertile, Biol. Reprod61:1445.PubMedCrossRefGoogle Scholar
  104. Shaper, N.L., Hollis, G.F., Douglas, J.G., Kirsch, I.R. and Shaper, J.H., 1988, Characterization of the full-length cDNA for murine p-l,4-galactosyltranferase, J. Biol. Chem263:10420.PubMedGoogle Scholar
  105. Shur, B.D., 1991, Cell surface P-l,4-galactosyltransferase: twenty years later. Glycobiology1:563.PubMedCrossRefGoogle Scholar
  106. Sullivan, R. and Bleau, G., 1985, Interaction between isolated components from mammalian sperm and egg, Gamete Res12:101.CrossRefGoogle Scholar
  107. Sylvester, S.R., Morales, C., Oko, R. and Griswold, M.D., 1991, Localization of sulfated glycoprotein-2 (clusterin) on spermatozoa and in the reproductive tract of the male rat, Biol. Reprod45:195.PubMedCrossRefGoogle Scholar
  108. Tezon, J.G., Vazquez, M.H., Pineiro, L., de Larminant, M.A. and Blaquier, J.A., 1985a, Identification of androgen-induced proteins in human epididymis, Biol. Reprod32:584.PubMedCrossRefGoogle Scholar
  109. Tezon, J.G., Ramella, R., Cameo, M.S., Vazquez, M.H. and Blaquier, J.A., 1985b, Immunochemical localization of secretory antigens in the human epididymis and their association with spermatozoa. Biol. Reprod32:591.PubMedCrossRefGoogle Scholar
  110. Tsuruta, J.K., Wong, K., Fritz, LB. and Griswold, M.D., 1990, Structural analysis of sulphated glycoprotein 2 from amino acid sequence, Biochem. J268:571.PubMedGoogle Scholar
  111. Tulsiani, D.R.P., Skudlarek, M.D. and Orgebin-Crist, M.-C., 1989, Novel a-D-mannosidase of rat sperm plasma membranes: characterization and potential role in sperm-egg interactions, J. Cell Biol109:1257.PubMedCrossRefGoogle Scholar
  112. Tulsiani, D.R., Skudlarek, M.D. and Orgebin-Crist, M.C., 1990, Human sperm plasma membranes possess alpha-D-mannosidase activity but no galactosyltransferase activity, Biol. Reprod42:843.PubMedCrossRefGoogle Scholar
  113. Tulsiani DRP, Cornwall GA, Skudlarek MD, Orgebin-Crist M-C., 1991, Increase in sperm plasma membrane α-D-mannosidase correlates with the development of sperm binding ability. in: Comparative Spermatology 20 Years After,B. Baccetti, ed., Raven Press, New York.Google Scholar
  114. Tulsiani, D.R., NagDas, S.K., Cornwall, G.A. and Orgebin-Crist, M.C., 1992, Evidence for the presence of high-mannose/hybrid oligosaccharide chain(s) on the mouse ZP2 and ZP3, Biol. Reprod46:93.PubMedCrossRefGoogle Scholar
  115. Tulsiani, D.R.P., NagDas, S.K., Skudlarek, M.D. and Orgebin-Crist, M.C., 1995, Rat sperm plasma membrane mannosidase: Localization and evidence for proteolytic processing during epididymal maturation, Dev. Biol167:584.PubMedCrossRefGoogle Scholar
  116. Wolfsberg, T.G., Primakoff, P., Myles, D.G. and White, J.M., 1995, ADAM, a novel family of membrane proteins containing a disintegrin and metalloprotease domain: Multipotential functions in cell-cell and cell-matrix interactions, J. Cell Biol131:275.PubMedCrossRefGoogle Scholar
  117. Wong, P.Y.D., Tsang, A.Y.F. and Lee, W.M., 1981, Origin of the luminal fluid proteins of the rat epididymis, Int. J. Androl4:331.PubMedCrossRefGoogle Scholar
  118. Xu, W. and Hamilton, D.W., 1996, Identification of the rat epdidymis-secreted 4E9 antigen as protein E: Further biochemical characterization of highly homologous epididymal secretory proteins D and E, Mol. Reprod. Dev43:347.PubMedCrossRefGoogle Scholar
  119. Xu, W.D., Wang, L.F., Miao, S.Y., Zhao, M., Fan, H.Y., Zong, S.D., Wu, Y.W., Shi, X.Q. and Koide, S.S., 1996, Identification of a rabbit epididymal protein gene, Arch. Androl37:135.PubMedCrossRefGoogle Scholar
  120. Yanagimachi R., 1994, Mammalian fertilization, in: The Physiology of Reproduction,E. Knobil, J.D. Neill, ed., Raven Press, New York.Google Scholar
  121. Yeung, C.H., Cooper, T.G. and Nieschlag, E., 1997, Human epididymal secreted protein CD52 on ejaculated spermatozoa: correlations with semen characteristics and the effect of its antibody, Mol. Hum. Reprod3:1045.PubMedCrossRefGoogle Scholar
  122. Yeung, C.H., Cooper, T.G., Schroter, S., Kirchhoff, C. and Nieschlag, E., 1998, Epididymal secretion of CD52 as measured in human seminal plasma by a fluorescence inmunoassay, Mol. Hum. Reprod4:411.Google Scholar
  123. Yoshida-Komiya, H., Tulsiani, D.R., Hirayama, T. and Araki, Y., 1999, Mannose-binding molecules of rat spermatozoa and sperm-egg interaction, Zygote7:335.PubMedCrossRefGoogle Scholar
  124. Youakim, A., Hathaway, H.J., Miller, D.J., Gong, X. and Shur, B.D., 1994, Overexpressing sperm surface β-1,4-galactosyltransferase in transgenic mice affects multiple aspects of sperm-egg interactions, J. Cell. Biol126:1573.PubMedCrossRefGoogle Scholar
  125. Young, L.G., Hinton, B.T. and Gould, K.G., 1985, Surface changes in chimpanzee sperm during epididymal transit, Biol. Reprod32:399.PubMedCrossRefGoogle Scholar
  126. Young, L.G., Gould, K.G. and Hinton, B.T., 1987, Changes in binding of a 27-kilodalton chimpanzee cauda epididymal protein glycoprotein component to chimpanzee sperm, Gam. Res18:163.CrossRefGoogle Scholar
  127. Yuan, R.Y., Primakoff, P. and Myles, D.G., 1997, A role for the disintegrin domain of cyritestin, a sperm surface protein belonging to the ADAM family, in mouse sperm-egg plasma membrane adhesion and fusion, J. Cell Biol137:105.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Patricia S. Cuasnicú
    • 1
  • Débora J. Cohen
    • 1
  • Diego A. Ellerman
    • 1
  • Dolores Busso
    • 1
  • Vanina G. Da Ros
    • 1
  • Mauro M. Morgenfeld
    • 1
  1. 1.Instituto de Biología y Medicina ExperimentalBuenos Aires (1428)Argentina

Personalised recommendations