Ethylene pp 289-335 | Cite as

Ethylene in Agriculture: Synthetic and Natural Sources and Applications

  • Muhammad Arshad
  • William T. FrankenbergerJr.


Ethylene as well as other plant growth regulators (PGRs) are important chemicals in agricultural production. Plant growth regulators are now used worldwide on a diversity of crops each year (Thomas, 1982). The plant hormone, C2H4 strongly influences nearly every development stage in plant growth, from germination to fruit ripening and senescence. Moreover, its critical role in post-harvest physiology of agricultural products has also been well documented. Obviously, a compound with so many different effects may be useful in many ways to modify plant growth and development as required by growers. However, many factors including its gaseous nature and some negative effects on plant growth, restrict the extensive practical usefulness of C2H4. Furthermore, the consistency of results observed under controlled experimental conditions may not always be achieved under conditions of practical applications (i.e., under natural field conditions).


Transgenic Plant C2H4 Production Phosphonic Acid Spring Barley Transgenic Tomato Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F. B., Morgan, P. W., and Saltveit, M. E., Jr., 1992,Ethylene in Plant Biology, 2nd Edition, Academic Press, San Diego.Google Scholar
  2. Abdallah, M. M. F., El-Beltagy, A. S., Maksoud, M. A., Smith, A. R., and Hall, M. A., 1986, Effect of soil application of chloroethylphosphonic acid upon the growth and yield of tomatoes,Acta Hortic.190:383-387.Google Scholar
  3. Agar, I. T., Massantini, R., Hess-Pierce, B., and Kader, A. A., 1999, Postharvest CO2 and ethylene production and quality maintenance of fresh-cut kiwifruit slices,J. Food Sci. 64:433-440.CrossRefGoogle Scholar
  4. Anonymous, 1967, Amchem-66-329, a new plant growth regulator, Amchem Products Inc., Information Sheet 37.Google Scholar
  5. Araki, S., Matsuoka, M., Tanaka, M., and Ogawa, T., 2000, Ethylene formation and phenotypic analysis of transgenic tobacco plants expressing a bacterial ethylene-forming enzyme,Plant Cell Physiol. 41:327-334.PubMedCrossRefGoogle Scholar
  6. Arshad, M., and Frankenberger, W. T., Jr., 1988, Influence of ethylene produced by soil microorganisms on etiolated pea seedlings,Appl. Environ. Microbiol.54:2728-2732.PubMedGoogle Scholar
  7. Arshad, M., and Frankenberger, W. T., Jr., 1990a, Response of Zea mays and Lycopersicon esculentum to the ethylene precursors, L-methionine and L-ethionine, applied to soil,Plant Soil 122:219-227.CrossRefGoogle Scholar
  8. Arshad, M., and Frankenberger, W. T., Jr., 1990b, Ethylene accumulation in soil in response to organic amendments,Soil Sci. Soc. Am. J. 54:1026-1031.CrossRefGoogle Scholar
  9. Arshad, M., Javed, M., and Hussain, A., 1994, Response of soybean(Glycine max)to soil-applied precursors of phytohormones,PGRSA Quarterly 22:109-115.Google Scholar
  10. Arshad, M., Hussain, A., Javed, M., and Frankenberger, W. T., Jr., 1993, Effect of soil applied methionine on growth, nodulation and chemical composition ofAlbizia lebbeckL.,Plant Soil 148:129-135.CrossRefGoogle Scholar
  11. Atta-Aly, M. A., Riad, G. S., Lacheene, Z. El.-S., and El-Beltagy, A. S., 1999, Early application of ethrel extends tomato fruit cell division and increases fruit size and yield with ripening delay,J. Plant Growth Regul. 18:15-24.PubMedCrossRefGoogle Scholar
  12. Ayub, R., Guis, M., Ben Amor, M., Gillot, L., Roustain, J.-P., Latche, A., Bouzayen, M., and Pech, J.-C., 1996,Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits,Nature Biotech. 14:862-866.CrossRefGoogle Scholar
  13. Banno, K., Hayashi, S., and Tanabe, K., 1986, Promotion of flower bud formation and increase of pollen yield by application of ethephon and BA in ’Chojuro’ pear (Pyrus serotina, Rehd.),J. Japan Soc. Hort. Sci. 55:33-39.CrossRefGoogle Scholar
  14. Beaudry, R. M., and Kays, S. J., 1988, Flux of ethylene from leaves treated with a polar or non-polar ethylene-releasing compound,J. Amer. Soc. Hort. Sci. 113:784-789.Google Scholar
  15. Bebawi, F. F., and Eplee, R. E., 1986, Efficacy of ethylene as a germination stimulantof Striga hermonthicaseed, Weed Sci.34:694-698.Google Scholar
  16. Ben-Amor, M., Flores, B., Latche, A., Bouzayen, M., Pech, J. C., and Romojaro, F., 1999, Inhibition of ethylene biosynthesis by antisense ACC oxidase RNA prevents chilling injury inCharentaiscantaloupe melons,Plant Cell Environ. 22:1579-1586.CrossRefGoogle Scholar
  17. Bergner, C., and Teichmann, C., 1993, A role for ethylene in barley plants responding to water shortage,J.Plant Growth Regul. 12:67-72.CrossRefGoogle Scholar
  18. Bhatt, J. R., 1987, Gum-tapping inAnogeissus latifolia(Combretaceae) using ethephon, Curr. Sci.56:936-930.Google Scholar
  19. Bibik, N. D., Letunova, S. V., Druchek, E. V., and Muromtsev, G. S., 1995, Effectiveness of soil-acting ethylene producer in obtaining sanitized seed potatoes,Russian Agri. Sci. 9:19-21.Google Scholar
  20. Block, M. J., and Young, D. C., 1971, Conversion of β-hydroxethylhydrazine to ethylene,Nature (London)New Biol. 231:288.Google Scholar
  21. Bratsch, A. D., and Mack, H. J., 1990, Ethephon and mechanical topping influence growth, yield, and lodging of sweet corn,HortSci. 25:291 -293.Google Scholar
  22. Bridger, G. M., Klinck, H. R., and Smith, D. L., 1995, Timing and rate of ethephon application to two-row and six-row spring barley,Agron. J. 87:1198-1206.CrossRefGoogle Scholar
  23. Brown, C. M., and Earley, E. B., 1973, Response of one winter wheat and two spring oat varieties to foliar applications of 2-chloroethyl phosphonic acid (Ethrel),Agron. J. 65:829-832.CrossRefGoogle Scholar
  24. Bukovac, M. J., Zucconi, F., Wittenbach, V. A., Flore, J. A., and Inoue, H., 1971, Effects of (2-chloroethyl)phosphonic acid on development and abscission of maturing sweet cherry (Prunus avium L.) fruit,J. Amer. Soc. Hort. Sci. 96:777-781.Google Scholar
  25. Bulman, P., and Smith, D. L., 1993, Yield and grain protein response of spring barley to ethephon and triadimefon,Crop Sci. 33:798-803.CrossRefGoogle Scholar
  26. Burd, G. I., Dixon, D. G., and Glick, B. R., 1998, A plant growth-promoting bacterium that decreases nickel toxicity in seedlings,Appl. Environ. Microbiol. 64:3663-3668.PubMedGoogle Scholar
  27. Byers, R. E., and Lyons, C. G., 1981, Peach thinning results with ethylene release agents, in:Proceedings Eighth Annual Meeting Plant Growth Regulator Society of America,St. Petersburg, FL., Aug. 3-6, 1981,pp. 179-180.Google Scholar
  28. Caldwell, C. D., Mellish, D. R., and Norris, J., 1988, A comparison of ethephon alone and in combination with CCC or DPC applied to spring barley,Can. J. Plant Sci. 68:941-946.CrossRefGoogle Scholar
  29. Chace, E. M., and Church, C. G., 1927, Effect of ethylene on the composition of fruits,Indust. Eng. Chem. 19:1135-1138.CrossRefGoogle Scholar
  30. Chace, E. M., and Sorber, D. G., 1936, Treating fruits and nuts in atmospheres containing ethylene,Food Indust. 8:292-294.Google Scholar
  31. Cooke, A. R., and Randall, D. L., 1968, 2-Haloethanephosphonic acids as ethylene releasing agents for the induction of flowering in pineapple,Nature 218:974-975.PubMedCrossRefGoogle Scholar
  32. Cooper, W., Bouzayen, M., Hamilton, A., Barry, C., Rossall, S., and Grierson, D., 1998, Use of transgenic plants to study the role of ethylene and polygalacturonase during infection of tomato fruit byColletotrichum gloeosporioides, Plant Pathol. 47:308-316.CrossRefGoogle Scholar
  33. Cousins, H. H., 1910, Annual Report of the Jamaican Department of Agriculture 7:15.Google Scholar
  34. Cox, W. J., and Andrade, H. F., 1988, Growth, yield, and yield components of maize as influenced by ethephon,Crop. Sci. 28:536-542.CrossRefGoogle Scholar
  35. Crocker, W., 1948, Growth of Plants, Chapter 4, Reinhold Publ. Corp., New York, pp. 139-171.Google Scholar
  36. Crossett, R. N., and Campbell, D. J., 1975, The effects of ethylene in the root environment upon the development of barley,Plant Soil 42:453-464.CrossRefGoogle Scholar
  37. Dahnous, K., Vigue, G. T., Law, A. G., Konzak, C. F., and Miller, D. G., 1982, Height and yield response of selected wheat, barley and triticale cultivars to ethephon,Agron. J. 74:580-582.CrossRefGoogle Scholar
  38. d’Andria, R., Chiaranda, F. Q., Lavini, A., and Mori, M., 1997, Grain yield and water consumption of ethephon-treated corn under different irrigation regimes,Agron. J. 89:104-112.CrossRefGoogle Scholar
  39. De Munk, W. J., and Duineveld, T. L. J., 1986, The role of ethylene in the flowering response of bulbous plants,Biol. Plant (Prague) 28:85-90.Google Scholar
  40. Dennis, F. G., Jr., 1976, Trials of ethephon and other growth regulators for delaying bloom in tree fruits,J.Amer. Soc. Hort. Sci. 101:241-245.Google Scholar
  41. Denny, F. E., 1923, Method of coloring citrus fruits, U.S. Patent 1,475,938. December, 1923.Google Scholar
  42. Denny, F. E., 1924, Hastening the coloration of lemons,J. Agr. Res. 27:757-768.Google Scholar
  43. Devlin, R. M., 1966, Plant Physiology, Reinhold Publ. Corp., New York. DeWilde, R. C., 1971, Practical applications of (2-chIoroethyl) phosphonic acid in agricultural production,HortSci. 6:364-370.Google Scholar
  44. Dill, G. M., and Martin, F. A., 1981, The effect of ethephon on endogenous sucrose and reducing sugar levels of immature internodal tissues of sugarcane, in:Proc. Eighth Annual Meeting Plant Growth Regulator Society of America, St. Petersburg, FL, Aug. 3-6, 1981, pp. 1.Google Scholar
  45. Dilley, D. R., 1989, Air separator technology development for controlled atmosphere storage, in:Proc. Fifth Intl. Controlled Atm. Res. Conf.,Wenatchee, WA, pp. 409-418.Google Scholar
  46. Dilley, C. L., and Dilley, D. R., 1985, New technology for analyzing ethylene and determining the onset of the ethylene climacteric of apples, in: Controlled Atmospheres for Storage and Transport of Perishable Agricultural Commodities, S. M. Blankenship, ed., Proc. 4th Natl. Cont. Atm. Res. Conf., pp. 353-362.Google Scholar
  47. Dilley, D. R., Lange, E., and Tomala, K., 1989, Optimizing parameters for controlled atmosphere storage of apples, in:Proc. Fifth Intl. Controlled Atm. Res. Conf,Wenatchee, WA, pp. 1-16.Google Scholar
  48. Dollwet, H. H. A., and Kumamoto, J., 1972, The conversion of 2-hydroxethylhydrazine to ethylene,Plant Physiol. 49:696-699.PubMedCrossRefGoogle Scholar
  49. Draber, W., 1977, Naturiche und synthetische Wachstumsregulatoren, in:Chemie der Pflanzenschutz: und Schadlingsberkampfungsmittel, Band 4, R. Wegler, ed., Springer-Verlag, Berlin, p. 1.Google Scholar
  50. Drennan, D. S. H., and Norton, C., 1972, The effect of Ethrel on nodulation in Pisum sativum L.,Plant Soil 36:53-57.CrossRefGoogle Scholar
  51. Earley, E. B., and Slife, F. W., 1969, Effect of Ethrel on growth and yield of corn,Agron. J.61:821-823.CrossRefGoogle Scholar
  52. Edgerton, L. J., and Blanpied, G. D., 1968, Regulation of growth and fruit maturation with 2-chloroethanephosphonic acid,Nature 219:1064-1065.PubMedCrossRefGoogle Scholar
  53. Egley, G. H., and Dale, J. E., 1970, Ethylene, 2-chloroethylphosphonic acid, and witchweed germination,Weed Sci. 18:586-589.Google Scholar
  54. Egley, G. H., 1982, Ethylene stimulation of weed seed germination,Agric. Forest Bull. 5:13-18 (Univ. Alberta).Google Scholar
  55. El-Beltagy, A. S., Madkour, M. A., and Hall, M. A., 1986, Uptake and movement of ethylene in tomatoes in relation to waterlogging,Acta Horticul.190:355-370.Google Scholar
  56. El-Beltagy, A. S., Madkour, M. A., and Hall, M. A., 1990, 14 C-Ethylene movement and uptake in waterlogged broad bean (Vicia faba L.) plants, Egypt. J. Hort. 17:171-180.Google Scholar
  57. Eplee, R. E., 1975, Ethylene, a witchweed seed germination stimulant, Weed Sci. 23:433-436.Google Scholar
  58. Fairey, D. T., and Stoskopf, N. C., 1975, Effects of granular ethephon on male sterility in wheat, Crop. Sci. 15:29-32.CrossRefGoogle Scholar
  59. Ferguson, L., Shorey, H., and Wood, D., 1990, Ethrel effects on fig harvest, in: Proc. 17th Annual Meeting Plant Growth Regulator Society of America, St. Paul, MN, Aug. 5-9, 1990, pp. 153-156.Google Scholar
  60. Foster, K. R., and Taylor, J. S., 1993, Response of barley to ethephon: Effects of rate, nitrogen, and irrigation,Crop. Sci. 33:123-131.CrossRefGoogle Scholar
  61. Foster, K. R., Reid, D. M., and Pharis, R. P., 1992, Ethylene biosynthesis and ethephon metabolism and transport in barley, Crop Sci. 32:1345-1352.CrossRefGoogle Scholar
  62. Foy, C. L., 1983, Ethephon as an anti-lodging agent for small grains, in: Proceedings Tenth Annual Meeting,Plant Growth Regulator Society of America, East Lansing, MI, June 19-23, 1983, pp. 293-301.Google Scholar
  63. Foy, C. L., and Witt, H. L., 1984, Ethephon for prevention of lodging of wheat and barley in Virginia: A three-year summary, in: Proc. 11th Annual Meeting, Plant Growth Regulator Society of America, Boston, MA,July 29-Aug. 1, 1984, pp. 68-69.Google Scholar
  64. Frankenberger, W. T., Jr., and Phelan, P. J., 1985a, Ethylene biosynthesis in soil I. Method of assay in conversion of 1-aminocyclopropane-l-carboxylic acid to ethylene, Soil Sci. Soc. Am. J. 49:1416-1422.CrossRefGoogle Scholar
  65. Frankenberger, W. T., Jr., and Phelan, P. J., ,1985b, Ethylene biosynthesis in soil II. Kinetics and thermodynamics in the conversion of 1-aminocyclopropane-l-carboxylic acid to ethylene, Soil Sci. Soc.Am. J. 49:1422-1426.CrossRefGoogle Scholar
  66. Freytag, A. H., Wendt, C. W., and Lira, E. P., 1972, Effects of soil-injected ethylene on yields of cotton and sorghum, Agron. J. 64:524-526.CrossRefGoogle Scholar
  67. Fukuda, H., Ogawa, T., Ishihara, K., Fujii, T., Nagahama, K., Omata, T., Inoue, Y., Tanase, S., and Morino, Y.,1992, Molecular cloning in Escherichia coli, expression and nucleotide sequence of the gene for theethylene-forming enzyme of Pseudomonas syringae pv. phaseolicola PK2, Biochem. Biophys. Res.Commun. 188:826-832.PubMedCrossRefGoogle Scholar
  68. Fukuda, H., Ogawa, T., and Tanase, S., 1993, Ethylene production by microorganisms, Adv. Microbiol. Physiol. 35:275-306.CrossRefGoogle Scholar
  69. Garcia-Torres, L., and Gomez-Campo, C., 1972, Increased tuberization in potatoes by ethrel (2-chloro-ethyl-phosphonic acid), Potato Res. 15:76-80.CrossRefGoogle Scholar
  70. Gaska, J. M., and Oplinger, E. S., 1987, Influence of ethephon on sweet and field corn, Bull. Plant Growth Regul. Soc. Am. 16:1988. (Abstract).Google Scholar
  71. Gaska, J. M., and Oplinger, E. S., 1988a, Yield, lodging, and growth characteristics in sweet corn as influenced by ethephon timing and rate, Agron. J. 80:722-726.CrossRefGoogle Scholar
  72. Gaska, J. M., and Oplinger, E. S., 1988b, Use of ethephon as a plant growth regulator in corn production, Crop Sci. 28:981-986.CrossRefGoogle Scholar
  73. Gianfagna, T. J., Marini, R., and Rachmiel, S., 1986, Effect of ethephon and GA3 on time of flowering in peach,HortSci. 21:69-70.Google Scholar
  74. Glick, B. R., Karaturovic, D. M., and Newell, P. C., 1995, A novel procedure for rapid isolation of plant growth-promoting pseudomonads, Can. J. Microbiol. 41:533-536.CrossRefGoogle Scholar
  75. Glick, B. R., Penrose, D. M., and Li, J., 1998, A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria, J. Theor. Biol. 190:63-68.PubMedCrossRefGoogle Scholar
  76. Glick, B. R., Jacobson, C. B., Schwarze, M. M. K., and Pasternak, J. J., 1994a, Does the enzyme 1-aminocyclopropane-1-carboxylate deaminase play a role in plant growth promotion by Pseudomonas putida GR12-2? in: Improving Plant Productivity with Rhizosphere Bacteria, M. H. Ryder, Stephens, P.M., and Bowen, G. D., eds., CSIRO, Adelaide, pp. 150-152.Google Scholar
  77. Glick, B. R., Jacobson, C. B., Schwarze, M. M. K., and Pasternak, J. J., 1994b, 1-Aminocyclopropane-l-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation, Can. J. Microbiol. 40:911-915.CrossRefGoogle Scholar
  78. Glick, B. R., Liu, C., Ghosh, S., and Dumbroff, E. B., 1997, Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2, Soil Biol. Biochem. 29:1233-1239.CrossRefGoogle Scholar
  79. Gonzalez, L. G., 1924, The smudging of mango trees and its effects, Philipp Agric. 12:15-28.Google Scholar
  80. Good, X., Kellogg, J. A., Wagoner, W., Langhoff, D., Matsumura, W., and Bestwick, R. K., 1994, Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase, Plant Molec. Biol. 26:781-790.CrossRefGoogle Scholar
  81. Goodlass, G., and Smith, K. A., 1979, Effects of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.), Plant Soil 51:387-395.CrossRefGoogle Scholar
  82. Green, C. F., Chalmers, I. F., and Packe-Drury-Lowe, S. J., 1988, Enhancing the performance of ethephon with mepiquat chloride on barley (Hordeum distichon cv. Panda) using an adjuvant comprising acidified sayal phospholipid, Ann. Appl. Biol. 113:177-188.CrossRefGoogle Scholar
  83. Grichko, V. P., Filby, B.„ and Glick, B. R., 2000, Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn, J. Biotechnol. 81:45-53.PubMedCrossRefGoogle Scholar
  84. Gull, D. D., 1981, Ripening tomatoes with ethylene: Vegetable crops fact sheet, Florida Coop. Ext. Serv. VC-29.Google Scholar
  85. Hall, J. A., Peirson, D., Ghosh, S., and Glick, B. R., 1996, Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2, Isr. J. Plant Sci. 44:37-42.Google Scholar
  86. Hamilton, A. J., Lycett, G. W., and Grierson, D., 1990, Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants Nature 346:284-287.CrossRefGoogle Scholar
  87. Harvey, R. B., 1925, Blanching celery, Minn. Agr. Expt. Sta. Res. Bull. 222.Google Scholar
  88. Harvey, R. B., 1928, Artificial ripening of fruits and vegetables, Minn. Agr. Sta. Res. Bull. 247.Google Scholar
  89. Henneberry, T. J., Bariola, L. A., Chu, C. C., Meng, T., Jr., Deeter, B., and Jech, L. F., 1992, Early-season ethephon applications: Effect on cotton fruiting and initiation of pink bollworm infestations and cotton yields, Southwestern Entomologist 17:135-147.Google Scholar
  90. Henzi, M. X., Christey, M. C., and McNeil, D. L., 2000,Morphological characterization and agronomic evaluation of transgenic broccoli (Brassica oleracea L.var. italica) containing an antisense ACC oxidase gene, Euphytica 113:9-18.CrossRefGoogle Scholar
  91. Henzi, M. X., Christey, M. C., McNeil, D. L., and Davies, K. M., 1999a, Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica) with an antisense 1-aminocyclopropane-l-carboxylic acid oxidase gene, Plant Sci. 143:55-62.CrossRefGoogle Scholar
  92. Henzi, M. X., McNeil, D. L., Christey, M. C., and Lill, R. E., 1999b, A tomato antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene causes reduced ethylene production in transgenic broccoli, Aus. J. Plant Physiol. 26:179-183.CrossRefGoogle Scholar
  93. Hill, D. M., Joice, R., and Squires, N. R. W., 1982, Cerone: Its use and effect on the development of winter barley, in: Chemical Manipulation of Crop Growth and Development, J. S. McLaren (ed.). Butterworths,London, pp. 391-397.Google Scholar
  94. Hills, L. D., and Haywood, E. H., 1946, Rapid Tomato Ripening, Faber & Faber, London, pp. 143.Google Scholar
  95. Hughes, J. A., Brown, L. R., and Ferro, A. J., 1987a, Expression of cloned coliphage T3 S-adenosylmethionine hydrolase gene inhibits DNA methylation and polyamine biosynthesis in E. coli, J. Bacteriol. 169:3625-3632.PubMedGoogle Scholar
  96. Hughes, J. A., Brown, L. R., and Ferro, A. J., 1987b, Nucleotide sequence analysis of the coliphage T3 S-adenosylmethionine hydrolase gene and its surrounding ribonuclease III processing sites, Nucl. Acid Res. 15:717-729.CrossRefGoogle Scholar
  97. Inaba, A., and Nakamura, R., 1988, Numerical expression for estimating the minimum ethylene exposure time necessary to induce ripening in banana fruit, J. Amer. Soc. Hort. Sci. 113:561-564.Google Scholar
  98. Irving, D. E., 1987, “Fantasia” nectarine: Effects of autumn-applied ethephon on blossoming and cropping, New Zealand J. Expt. Agr. 15:67-72.CrossRefGoogle Scholar
  99. Ishii, T., and Kadoya, K., 1984a, Ethylene evolution from organic materials applied to soil and its relation to the growth of grapevines, J. Japan. Soc. Hort. Sci. 53:157-167.CrossRefGoogle Scholar
  100. Ishii, T., and Kadoya, K., 1984b, Growth of citrus trees as affected by ethylene evolved from organic materials applied to soil, J. Japan Soc. Hort. Sci. 53:320-330.CrossRefGoogle Scholar
  101. Iwahori, S., Lyons, J. M., and Sims, W. L., 1969, Induced femaleness in cucumber by 2-chloroethanephosphonic acid, Nature 222:271-272.PubMedCrossRefGoogle Scholar
  102. Iwasaki, K., Mizutani, F., and Ishii, T., 1981, Soil aeration and the growth of citrus trees, in: Systematic Studies for the Improvement of Citrus Growing on Steep Slope Orchards, K. Kadoya, ed., Monbus-sho Sogo Kenkyo (A), Ehime Univ., Japan, pp. 42-46.Google Scholar
  103. Jackson, M. B., and Campbell, D. J., 1975, Movement of ethylene from roots to shoots, a factor in the responses of tomato plants to waterlogged soil conditions, New Phytol. 74:397-406.CrossRefGoogle Scholar
  104. Jacobson, C. B., Pasternak, J. J., and Glick, B. R., 1994, Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2, Can. J. Microbiol. 40:1019-1025.CrossRefGoogle Scholar
  105. Kabachnik, M. I., and Rosiiskaya, P. A., 1946, Organophosphorus compounds. 1. Reaction of ethylene oxide with phosphorous trichloride, Izv. Akad. Nauk. SSSR Khim. Nauk. 406:295.Google Scholar
  106. Kasele, I. N., Nyirenda, F., Shanahan, J. F., Nielsen, D. C., and d’Andria, R., 1994, Ethephon alters corn growth, water use, and grain yield under drought stress, Agron. J. 86:283-288.CrossRefGoogle Scholar
  107. Kasmire, R. F., Pratt, H. K., and Chacon, F., 1970, Honeydew melon maturity and ripening guide, Calif. Agr.Ext. Serv. MA-26.Google Scholar
  108. Kasperbauer, M. J., and Hamilton, J. L., 1978, Ethylene regulation of tobacco seedling size, floral induction,and subsequent growth and development, Agron. J. 70:363-366.CrossRefGoogle Scholar
  109. Kasperbauer, M. J., and Hamilton, J. L., 1978, Ethylene regulation of tobacco seedling size, floral induction,and subsequent growth and development, Agron. J. 70:363-366.Google Scholar
  110. Kawase, M., 1974, Role of ethylene in induction of flooding damage in sunflower, Physiol. Plant. 31:29-38.CrossRefGoogle Scholar
  111. Kende, H., 1993, Ethylene biosynthesis, Annu. Rev. Plant Physiol Plant Mol Biol 44:283-307.CrossRefGoogle Scholar
  112. Ketring, D. L., 1977, Physiology of oil seeds, VI. A means to break dormancy of peanut (Arachis bypogaea L.) seeds in the field, Peanut Sci. 4:42-45.Google Scholar
  113. Kim, G.-H., and Wills, R. B. H., 1995, Effect of ethylene on storage life of lettuce, J. Sci. Food Agric. 69:197-201.CrossRefGoogle Scholar
  114. Klee, H. J., 1993, Ripening physiology of fruit from transgenic tomato (Lycopersicon esculentum) plants with reduced ethylene synthesis, Plant Physiol 102\:911-916.PubMedGoogle Scholar
  115. Klee, H. J., and Kishore, G. M., 1992, Control of fruit ripening and senescence in plants, International Patent No. W092/12249. European Patent Office, World Intellectual Property Organization.Google Scholar
  116. Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F. and Kishore, G. M., 1991, Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants, Plant Cell 3:1187-1193.Google Scholar
  117. Knee, M., Proctor, F. J., and Dover, C. J., 1985, The technology of ethylene control: Use and removal in postharvest handling of horticultural commodities, Ann. Appl. Biol 107:581-595.Google Scholar
  118. Knight, L. I., and Crocker, W., 1913, Toxicity of smoke, Bot. Gaz. 55:337-371.CrossRefGoogle Scholar
  119. Koller, D. C, and Hiller, L. K., 1988, Response of russet burbank potatoes to ethephon sprays, Am. Pot. J. 65:529-534.CrossRefGoogle Scholar
  120. Konings, H., and Jackson, M. B., 1979, A relationship between rates of ethylene production by roots, and the promoting or inhibiting effects of exogenous ethylene and water on root elongation, Z. Pflanzenphysiol Biodenkd. 92:385-397.Google Scholar
  121. Konsler, J. V., and Grabau, L. J., 1989, Ethephon as a morphological regulator for corn, Agron. J.81:849-852.CrossRefGoogle Scholar
  122. Konze, J., and Lürssen, K., 1983, Unterschiedliche Wirkungsspektren von Ethylen-Wachstummsregulatoren:Welche Rolle spielt die freigesetzte Ethylenmenge? in: Regulation des Phytohormon-gehaltes, F.Bangerth, ed., Hohenheimer Arbeiten Band 129, Verlag Eugen Ulmer, Stuttgart, Germany, pp. 145.Google Scholar
  123. Ku, V. V. V., Wills, R. B. H., and Ben-Yehoshua, S., 1999, 1-Methylcyclopropene can differentially affect the postharvest life of strawberries exposed to ethylene, HortSci. 34:119-120.Google Scholar
  124. Ku, H. W., Suge, H., Rappaport, L., and Pratt, H. K., 1970, Stimulation of rice coleoptile growth by ethylene,Planta 90:333-339.CrossRefGoogle Scholar
  125. Kumar, A., Tylor, M. A., Arif, S. A. M., and Davies, H. V., 1996, Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes, The Plant J. 9:147-158.Google Scholar
  126. Kuo, C. G., and Chen, B. W., 1980, Physiological responses of tomato cultivars to flooding, J. Am. Soc. Hort.Sci. 105:751-755.Google Scholar
  127. Langan, T. D., and Oplinger, E. S., 1987, Growth and yield of ethephon treated maize, Agron. J. 79:130-134.CrossRefGoogle Scholar
  128. Langille, A. R., 1972, Effects of (2-chloroethyl) phosphonic acid on rhizome and tuber formation in the potato,Solanum tuberosum L. J. Amer. Soc. Hort. Sci. 97:305-308.Google Scholar
  129. Lavee, S., and Martin, G. C, 1974, Ethephon (l,2-14C-(2-chloroethyl)phosphonic acid in peach fruits, I.Penetration and persistence, J. Amer. Soc. Hort. Sci. 99:97-99.Google Scholar
  130. Lay, C., and Dybing, C. D., 1983, Effects of plant growth regulators which delay senescence on seed and oil yields in oilseeds, in: Proc. Tenth Annual Meeting Plant Growth Regulator Society of America, East Lansing, MI, June 19-23, 1983, pp. 270-276.Google Scholar
  131. Lei, C.-H., Lindstrom, J. T., and Woodson, W. R., 1996, Reduction of 1-aminocyclopropane-l-carboxylic acid (ACC) in pollen by expression of ACC deaminase in transgenic petunias, Plant Physiol 111:149.Google Scholar
  132. Li, J., Ovakim, D. H., Charles, T. C, and Glick, B. R., 2000, An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation, Curr. Microbiol 41:101-105.Google Scholar
  133. Lifshitz, R., Kloepper, J. W., Kozlowski, M., Simonson, C, Carlson, J., Tipping, E. M., and Zaleska, L., 1987,Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions, Can. J. Microbiol. 33:390-395.Google Scholar
  134. Lill, R. E., and McWha, J. A., 1976, Production of ethylene by incubated litter of Pinus radiata, Soil Biol.Biochem. 8:61-63.Google Scholar
  135. Lill, R. E., and Waid, J. S., 1975, Volatile phytotoxic substances formed by litter of Pinus radiata, N. Z. J. For.Sci. 5:65-70.Google Scholar
  136. Lindstrom, J. T., Lei, C.-H., and Woodson, W. R., 1996, Reduction of 1-aminocyclopropane-l-carboxylic acid(ACC) in pollen by expression of ACC-deaminase in transgenic petunias, HortSci. 31:571.Google Scholar
  137. Liptay, A., Phatak, S. C., and Jaworski, C. A., 1982, Ethephon treatment of tomato transplants improves frost tolerance, HortSci. 17:400-401.Google Scholar
  138. Liu, F. W., 1978, Effects of harvest date and ethylene concentration in controlled atmosphere storage on the quality of’Mcintosh’ apples, J. Amer. Soc. Hort. Sci. 103:388-392.Google Scholar
  139. Lower, R. L., and Miller,, C. H., 1969, Ethrel (2-chloroethanephosphonic acid) a tool for plant hybridizers,Nature 222:1072-1073.CrossRefGoogle Scholar
  140. Lürssen, K., 1982, Manipulation of crop growth by ethylene and some implications of the mode of generation,in: Chemical Manipulation of Crop Growth and Development, J. S. McLaren, ed., Butterworth Scientific,London, pp. 67-78.Google Scholar
  141. Lürssen, K., 1991, Ethylene and agriculture, in: The Plant Hormone Ethylene, A. K. Mattoo and J. C. Suttle,eds., CRC Press, Boca Raton, FL, pp. 315-326.Google Scholar
  142. Lürssen, K., and Konze, J., 1985, Relationship between ethylene production and plant growth after application of ethylene releasing plant growth regulators, in: Ethylene and Plant Development, J. A. Roberts and Tucker, G. A., eds., Butterworths, London, pp. 363-372.Google Scholar
  143. Ma, B. L., and Smith, D. L., 1992, Chlormequat and ethephon timing and grain production of spring barley,Agron. J. 84:934-939.CrossRefGoogle Scholar
  144. Ma, B. L., Leibovich, G., Maloba, W. E., and Smith, D. L., 1992, Response of spring barley cultivars to nitrogen fertilizer and ethephon in regions with a short crop growing season, J. Agron. Crop Sci. 165:151-160.CrossRefGoogle Scholar
  145. Macnish, A. J., Joyce,, D. C, Hofman, P. J., and Simons, D. H., 1999, Involvement of ethylene in postharvest senescence of Boronia heterophylla flowers, Aust. J. Exptl Agric. 39:911-913.CrossRefGoogle Scholar
  146. Martin-Tanguy, J., Corbineau, F., Burtin, D., Ben-Hayyim, G., and Tepfer, D., 1993, Genetic transformation with a derivative of rolC from Agrobacterium rhizogenes and treatment with α-aminoisobutyric acid produce similar phenotypes and reduce ethylene production and the accumulation of water-insoluble polyamine-hydroxycinnamic acid conjugates in tobacco flowers, Plant Sci. 93:63-76.CrossRefGoogle Scholar
  147. Mayak, S., Tivosh, T., and Blick, B. R., 1999, Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings, J. Plant Growth Regul. 18:49-53.PubMedCrossRefGoogle Scholar
  148. Maynard, J. A., and Swan, J. M., 1963, Organophosphorus compounds. I. 2-chloroalkylphosphonic acids as phosphorylating agents, Aust. J. Chem. 16:596-608.CrossRefGoogle Scholar
  149. McMurray, A. L., and Miller, C. H., 1968, Cucumber sex expression modified by 2-chloroethanephosphonic acid, Science 162:1397-1398.PubMedCrossRefGoogle Scholar
  150. Metraux, J. P., and Kende, H., 1983, The role of ethylene in the growth response of submerged deep water rice,Plant Physiol. 72:441-446.PubMedCrossRefGoogle Scholar
  151. Milbrath, J. A., Hansen, E., and Hartman, H., 1940, The removal of leaves from rose plants at the time of digging, Oregon Agric. Exp. Sta. Bull. 385, pp. 11.Google Scholar
  152. Miller, E. V., 1947, The story of ethylene, Sci. Monthly 65:335-342.Google Scholar
  153. Miller, D. M., and Wells, B. R., 1992, Indentifying the causes of poor rice growth on preciusion-graded soils,in: Arkansas Rice Research Studies, 1991, B. R. Wells, ed., Res. Series 422, Arkansas Agric. Exp. Sta.,Fayetteville, AR, pp. 108-114.Google Scholar
  154. Mohan, R. H. Y., and Jaiswal, V. S., 1970, Induction of female flowers on male plants of Cannabis sativa L. by 2-chloroethanephosphonic acid, Experientia 26:214-216.CrossRefGoogle Scholar
  155. Moore, P. H., and Osgood, R. V., 1989, Prevention of flowering and increasing sugar yield of sugarcane by application of ethephon (2-chloroethylphosphonic acid), J. Plant Growth Regul. 8:205-210.CrossRefGoogle Scholar
  156. Morgan, P. W., 1969, Stimulation of ethylene evolution and abscission in cotton by 2-chloroethanephosphonic acid, Plant Physiol. 44:337-341.PubMedCrossRefGoogle Scholar
  157. Morgan, P. W., 1982, Ethylene as an agricultural chemical, Agric. For. Bull. 5:29-37.Google Scholar
  158. Morgan, P. W., 1986, Ethylene as an indicator and regulator in the development of field crops, in: Plant Growth Substances, 1985, M. Bopp, ed., Springer-Verlag, Berlin, pp. 375-379.Google Scholar
  159. Muromtsev, G. S., Letunova, S. V., Beresh, I. G., and Alekseeva, S. A., 1990, Soil ethylene as a plant growth regulator and ways to intensify its formation in soils, Biol. Bull. Acad. Sci. USSR 16:455-461.Google Scholar
  160. Muromstev, G. S., Krasinskaya, N. P., Letunova, S. V., and Beresh, I. G., 1991, Use of ethylene producing soilacting preparation on citrus crops, Soviet Agric. Sci. 2:24-26.Google Scholar
  161. Muromstev, G. S., Letunova, S. V., Reutovich, L. N., Timpanova, Z. L., Gorbatenko, I. Y., Shapoval, O. A.,Bibik, N. D., Stepanov, G. S., and Druchek, Y. V., 1993, Retprol--New ethylene-releasing preparation of soil activity, Russian Agri. Sci. 7:19-26.Google Scholar
  162. Muromtsev, G. S., Shapoval, O. A., Letunova, S. V., and Druchek, Y. V., 1995, Efficiency of new ethylene producing soil preparation retprol on cucumber plants, Selskokhozia. Biologiia 5:64-68.Google Scholar
  163. Murray, M., Beede, B., Weir, B., and Williams, J., 1995, Agricultural applications of ethephon, HortSci. 30:854.Google Scholar
  164. Nafziger, E. D., Wax, L. M., and Brown, C. M., 1986, Response of five winter wheat cultivars to growth regulators and increased nitrogen, Crop Sci. 26:767-770.CrossRefGoogle Scholar
  165. Nagao, M. A., and Sakai, W. S., 1987, Effect of ethephoon on abscission of macadamia fruits, in: Proceedings 14th Annual Meeting Plant Growth Regulator Society of America, Honolulu, HI, Aug. 2-6, 1987, pp. 70.Google Scholar
  166. Nakayama, M., Shimura, K., and Ota, Y., 1973, Physiological action of ethylene in crop plants. IV. Effects of ethylene application to roots on the growth of tomato and soybean plants, Proc. Crop Sci. Soc. Japan 42:493-498.Google Scholar
  167. Nayani, S., Mayak, S., and Glick, B. R., 1998, Effect of plant growth-promoting rhizobacteria on senescence of flower petals, Indian J. Exptl. Biol. 36:836-839.Google Scholar
  168. Norberg, O. S., Mason, S. C., and Lowry, S. R., 1989, Ethephon alteration of corn plant morphology, Agron. J.81:603-609.CrossRefGoogle Scholar
  169. Oeller, P. W., Min-Wong, L., Taylor, L. P., Pike, D. A., and Theologis, A., 1991, Reversible ihibition of tomato fruit senescence by antisense RNA, Science 254:437-439.PubMedCrossRefGoogle Scholar
  170. Parrish, D. J., Williams, J. T., and Alley, M. M., 1985, Ethephon in winter wheat, in: Proc. 12th Annual Meeting Plant Growth Regulator Society of America, University of Colorado, Boulder, CO, July 28-Aug.1, 1985, pp. 203.Google Scholar
  171. Pearson, C. H., Golus, H. M., and Tindall, T. A., 1989, Ethephon application and nitrogen fertilization of irrigated winter barley in an arid environment, Agron. J. 81:717-719.CrossRefGoogle Scholar
  172. Perret, P., and Koblet, W., 1979, Untersuchungen under den Zusammendang zwischen Sauerstaff-kohlendioxyd- und Aethylengehalt der Bodenluft und den Auftreten der Rebenctilorose, Wein-Wiss.34:151-170.Google Scholar
  173. Picton, S., Barton, S. L., Bouzayen, M., Hamilton, A. J., and Grierson, D., 1993, Altered fruit ripening and leaf senescence in tomato expressing an antisense ethylene-forming enzyme transgene, Plant J. 3:469-481.CrossRefGoogle Scholar
  174. Poovaiah, B. W., and Leopold, A. C., 1973, Effects of ethephon on growth of grasses, Crop Sci. 13:755-758.CrossRefGoogle Scholar
  175. Prohens, J., Ruiz, J. J., and Nuez, F., 1999, Yield, earliness and fruit quality of pepino clones and their hybrids in the autumn-winter cycle, J. Sci. Food Agric. 79:340-346.CrossRefGoogle Scholar
  176. Ramos, J. M., Garcia del Moral, L. F., Molina-Gano, J. L., Siamanca, P., Roca de Tagores, F., 1989, Effects of an early application of sulphur or ethephon as foliar spray on the growth and yield of spring barley in a Mediterranean environment, J. Agric. Crop Sci. 163:129-137.CrossRefGoogle Scholar
  177. Rao, K. P., and Fritz, C. D., 1987, Effects of ethephon plant regulator on rice yield, in: Proc. 14th Annual Meeting Plant Growth Regulator Society of America, Honolulu, HI, Aug. 2-6, 1987, pp. 489.Google Scholar
  178. Reed, A. J., Magin, K. M., Anderson, J. S., Austin, G. D., Rangwala, T., Linde, D. C., Love, J. N., Rogers, S.G., and Fuchs, R. L., 1995, Delayed ripening tomato plants expressing the enzyme 1-aminocyclopropane-1-carboxylic acid deaminase, 1. Molecular characterization, enzyme expression, and fruit ripening traits,J. Agric. Food Chem. 43:1954-1962.CrossRefGoogle Scholar
  179. Robinson, R. W., Shannon, S., and de la Gardia, M. D., 1968, Regulation of sex expression in cucumber, Bio.Sci. 19:141-142.Google Scholar
  180. Rodriguez, A. G., 1932, Influence of smoke and ethylene on the fruiting of the pineapple (Ananas sativus shult),J. Dept. Agr. Puerto Rico 26:5-18.Google Scholar
  181. Rogers, O. M., 1987, Ethephon overcomes seed scarification requirements of Pelargonium, in: Manipulation of Ethylene Responses in Horticulture, M. S. Reid, ed., Acta Hort. 201:165-167.Google Scholar
  182. Rosa, J. T., 1925, Ripening of tomatoes, Proc. Amer. Soc. Hort. Sci. 22:315-322.Google Scholar
  183. Rowell, P. L., and Miller, D. G., 1971, Induction of male sterility in wheat with 2-chloroethylphosphonic acid (Ethrel), Crop Sci. 11:629-631.CrossRefGoogle Scholar
  184. Rudich, J., Halevy, A. H., and Kedar,, N., 1969, Increase in femaleness of three cucurbits by treatment withethrel, an ethylene-releasing compound, Planta 86:69-76.CrossRefGoogle Scholar
  185. Sagaral, E. G., and Foy, C. L., 1989, Effects of selected growth regulators on growth, seed size, and yield of soybeans, in: Proc. 16th Annual Meeting Plant Growth Regulator Society of America, Arlington, VA,Aug. 6-10, 1989, p. 31.Google Scholar
  186. Sagaral, E. G., and Parrish, D. J., 1989, Response of maize to two growth regulators, in: Proc. 16th Annual Meeting Plant Growth Regulator Society of America, Arlington, VA, Aug. 6-10, 1989, p. 32.Google Scholar
  187. Sagaral, E. G., and Parrish, D. J., 1990, Effects of ethephon and Trigger on the growth and yield of corn, in:Proc. 17th Annual Meeting Plant Growth Regulator Society of America, St. Paul, MN, Aug. 5-9, 1990, p.123.Google Scholar
  188. Schipper, J. A., 1982, A smoke treatment influencing flower formation in iris bulbs, Neth. J. Agr. Sci. 30:173-177.Google Scholar
  189. Schrader, W. L., 1987, Use of ethephon for control of potato tuber size, in: Manipulation of Ethylene Responses in Horticulture, M. S. Reid, ed., Acta Hortic. 201:171-174.Google Scholar
  190. Schröder, R., and Lürssen, K., 1978, Mitted zur Regulierung des Pflanzenwachstums, Dtsch.Offeniegungsschrift Nr. 28(24):517.Google Scholar
  191. Schwartz, T. K., Coffin, R. H., Evans, W. F., Nash, R. L., and Rao, K. P., 1982, The effect of ethephon (2-chloroethyl)phosphonic acid on lodging and yield of small grain cereal crops, in: Proc. Ninth Annual Meeting Plant Growth Regulator Society of America, Monterey, CA, July 5-9, 1982, pp. 89-95.Google Scholar
  192. Serek, M., Sisler, E. C., and Reid, M. S., 1995, 1-Methylcyclopropene, a novel gaseous inhibitor of ethylene action, improves the life of fruits, cut flowers and potted plants, Acta Hort. 394:337-345.Google Scholar
  193. Shah, S., Li, J. Moffatt, B. A., and Glick, B. R., 1998, Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria, Can. J. Microbiol 44:833-843.PubMedCrossRefGoogle Scholar
  194. Shah, S., Li, J., Moffatt, B. A., and Glick, B. R., 1997, ACC deaminase genes from plant growth promoting rhizobacteria, in: Plant Growth-Promoting Rhizobacteria. Present Status and Future Prospects, A.Ogoshi, Kobayashi, K., Homma, Y., Kodama, F., Kondo, N., and Adkino, S., eds., OECD, Paris, France,pp. 320-324.Google Scholar
  195. Shatters, R. G., Jr., Wheeler, R., and West, S. H., 1998, Ethephon induced changes in vegetative growth of “Tifton85” bermudagrass, Crop. Sci. 38:97-103.CrossRefGoogle Scholar
  196. Sheehy, R. E., Honma, M., Yamada, M., Sasaki, T., Martineau, B., and Hiatt, W. R., 1991, Isolation, sequence,and expression in Escherichia coli of the Pseudomonas sp. strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase, J. Bacteriol. 173:5260-5265.PubMedGoogle Scholar
  197. Sherman, M., and Gull, D. D., 1981, A flow-through system for introducing ethylene into tomato ripening rooms, Vegetable Crops Fact Sheet, Fla. Coop. Ext. Serv. VC-30.Google Scholar
  198. Sherman, M., 1985, Control of ethylene in the post harvest environment, HortSci. 20:57-60.Google Scholar
  199. Simmonds, N. W., 1959, Bananas, Longman, Green and Co., Ltd., London.Google Scholar
  200. Simmons, S. R., Oelke, E. A., Wiersma, J. V., Lueschen, W. E., and Warnes, D. D., 1988, Spring wheat and barley responses to ethephon, Agron. J. 80:829-834.CrossRefGoogle Scholar
  201. Singh, G., 1970, Influence of ethrel on growth and yield of potatoes, Res. Life Sci. 18:38-43.Google Scholar
  202. Sisler, E. C., Serek, M., and Dupille, E., 1996, Comparison of cyclopropene, 1-methylcyclopropene, and 3,3-dimethylcyclopropene as ethylene antagonists in plants, Plant Growth Regul. 18:169-174.CrossRefGoogle Scholar
  203. Smith, C. W., Cothren, J. T., and Varvil, J. J., 1986, Yield and fiber quality of cotton following application of 2-chloroethyl phosphonic acid, Agron. J. 78:814-818.CrossRefGoogle Scholar
  204. Smith, K. A., and Robertson, P. D., 1971, Effect of ethylene on root extension of cereals, Nature 234:148-149.PubMedCrossRefGoogle Scholar
  205. Sterry, J. R., 1969, Ethrel as ethylene-evolving plant growth regulator, Meded. Rijksfac. Landbouwwet. Gent.34:462.Google Scholar
  206. Studier, F. W., and Movva, N. R., 1976, SAMase gene of bacteriophage T3 is resopnsible for overcoming host restriction, J. Virol 19:136-145.PubMedGoogle Scholar
  207. Stuart, N. W., Asen, S., and Gould, C. J., 1966, Accelerated flowering of bulbous iris after exposure to ethylene,HortSci. 1:19-20.Google Scholar
  208. Tang, T., and Miller, D. M., 1993, Ethylene production in anaerobically incubated soils amended with poultrylitter, Soil Sci. 156:186-192.CrossRefGoogle Scholar
  209. Thankur, R. P., and Rao, V. P., 1988, Effectiveness of ethrel as a male gametocide in pearl millet and its influence on ergot, Plant Breeding 101:107-113.CrossRefGoogle Scholar
  210. Thomas, T. H., 1982, Plant Growth Regulator Potential and Practice, BCPC Publications, Croydon, U.K., pp.271.Google Scholar
  211. Tindall, T. A., Pearson, C. H., and Olsen, S., 1989, Ethephon application to spring barley under variable nitrogen and moisture regimes, J. Fertilizer Issues 6:77-82.Google Scholar
  212. Traub, H. P., Cooper, W. C., and Reece, P. C., 1940, Inducing flowering in the pineapple, Ananas sativus, Proc.Amer. Soc. Hort. Sci. 37:521-525.Google Scholar
  213. Uyemura, S., and Imanishi, H., 1983, Effects of gaseous compounds in smoke on dormancy release in Freesia corms, Sci. Hortic. 20:91-99.CrossRefGoogle Scholar
  214. Van Andel, O. M., and Verkerke, D. R., 1978, Stimulation and inhibition by ethephon of stem and leaf growth of some gramineae at different stages of development, J. Exp. Bot. 29:639-651.CrossRefGoogle Scholar
  215. Wang, C., Knill, E., Glick, B. R., and Defago, G., 2000, Effect of transferring 1-aminocyclopropane-l-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gac A derivative CHA96 on their growth-promoting and disease-suppressive capacities, Can. J. Microbiol.46:898-907.PubMedGoogle Scholar
  216. Warner, H. L., and Leopold, A. C., 1969, Ethylene evolution from 2-chloroethylphosphonic acid, Plant Physiol 44:156-158.PubMedCrossRefGoogle Scholar
  217. Webster, J. R., and Jackson, L. F., 1993, Management practices to reduce lodging and maximize grain yield and protein content of fall-sown irrigated hard red spring wheat, Field Crops Res. 33:249-259.CrossRefGoogle Scholar
  218. Wiersma, D. W., Oplinger, E. S., and Guy, S. O., 1986, Environment and cultivar effects on winter wheat response to ethephon plant growth regulator, Agron. J. 78:761-764.CrossRefGoogle Scholar
  219. Wills, R. B. H., and Kim, G. H., 1995, Effect of ethylene on postharvest life of strawberries, Postharvest Biol Technol. 6:249-255.CrossRefGoogle Scholar
  220. Wills, R. B. H., and Kim, G. H., 1996, Effect of ethylene on postharvest quality of green beans, Aust. J. Exptl.Agric. 36:335-337.CrossRefGoogle Scholar
  221. Wills, R. B. H., and Wong, T., 1996, Effect of low ehylene levels on the storage life of the Asian leafy vegetables bak choi (Brassica chinensis), choi sum (Brassica parachinensis) and gai Ian (Brassica alboglabra), ASEAN Food J. 11:145-147.Google Scholar
  222. Wills, R. B. H., Ku, V. V. V., Shohet, D., and Kim, G. H., 1999, Importance of low ethylene levels to delay senescence of non-climacteric fruit and vegetables, Aust. J. Exptl Agric. 39:221-224.CrossRefGoogle Scholar
  223. Wills, R. B. H., McGlasson, W. B., Graham, D., Lee, T. H., and Hall, E. G., 1989, Postharvest: An Introduction to the Physiology and Handling of Fruits and Vegetables, 3rd Ed., New South Wales Univ. Press, Sydney,Australia.Google Scholar
  224. Xie, H., Pasternak, J. J., and Glick, B. R., 1996, Isolation and characterization of mutants of the plant growthpromoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid, Curr.Microbiol 32:67-71.CrossRefGoogle Scholar
  225. Yamaguchi, M., Chu, C. W., and Yang, S. F., 1971, The fate of 14C(2-chloroethyl) phosphonic acid in summer squash, cucumber, and tomato, J. Amer. Soc. Hort. Sci. 96:606-609.Google Scholar
  226. Yang, S. F., 1969, Ethylene evolution from 2-chloroethylphosphonic acid, Plant Physiol. 44:1203-1204.PubMedCrossRefGoogle Scholar
  227. Yang, S. F., and Hoffman, N. E., 1984, Ethylene biosynthesis and its regulation in higher plants, Annu. Rev.Plant Physiol 35:155-189.CrossRefGoogle Scholar
  228. Zahir, Z. A., and Arshad,, M., 1998, Response of Brassica carinata and Lens culinaris to the ethylene precursors, L-methionine and 1-aminocyclopropane-l-carboxylic acid, Soil Biol Biochem. 30:2185-2188.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Muhammad Arshad
    • 1
  • William T. FrankenbergerJr.
    • 2
  1. 1.University of AgricultureFaisalabadPakistan
  2. 2.University of CaliforniaRiversideCalifornia

Personalised recommendations