Skip to main content

Ethylene in Symbiosis

  • Chapter
Ethylene

Abstract

The involvement of C2H4 in plant responses to a variety of biotic and abiotic stress is well known (Abeles et al., 1992). The biotic stress includes parasitic and non-parasitic plant-microbe interactions, which play an important role in plant growth and development (Arshad and Frankenberger, 1992, 1993, 1998; Frankenberger and Arshad, 1995; Boiler, 1991; Abeles et al., 1992; Beyrle, 1995; Hirsch et al., 1997; Hirsch and Yang, 1994). The role of C2H4 in symbiotic associations is the major focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Abeles, F. B., Morgan, P. W., and Saltveit, M. E., Jr., 1992, Ethylene in Plant Biology, 2nd Ed. Academic Press,Inc., San Diego, CA.

    Google Scholar 

  • Arshad, M, and Frankenberger, W. T., Jr., 1992, Microbial biosynthesis of ethylene and its influence on plant growth, Adv. Microbiol. Ecol. 12:69-111.

    Article  CAS  Google Scholar 

  • Arshad, M., and Frankenberger, W. T., Jr., 1993, Microbial production of plant growth regulators, in: SoilMicrobial Ecology, B. F. Metting, ed., Marcel Dekker, New York, NY, pp. 307-347.

    Google Scholar 

  • Arshad, M., and Frankenberger, W. T., Jr., 1998, Plant growth-regulating substances in the rhizosphere:Microbial production and functions, D. L. Sparks, ed., Adv. Agron. 62:45-151.

    Article  CAS  Google Scholar 

  • Arshad, M., Hussain, A., Javed, M., and Frankenberger, W. T., Jr., 1993, Effect of soil applied L-methionine on growth, nodulation and chemical composition of Albizia lebbeck L., Plant Soil 148:129-135.

    Article  CAS  Google Scholar 

  • Beard, R., and Harrison, M. A., 1992, Effect of inoculation on ethylene production in beans, Plant Physiol.99:66.

    Google Scholar 

  • Beguiristain, T., and Lapeyrie, F., 1997, Host plant stimulates hypaphorine accumulation in Pisolithus tinctorius hyphae during ectomycorrhizal infection while excreted fungus hypaphorine controls root hair development, New Phytol. 136:525-532.

    Article  CAS  Google Scholar 

  • Beguiristain, T., Cote, R., Rubini, P., Jay-Allemand, C, and Lapeyrie, F., 1995, Hypaphorine accumulation in hyphae of the ectomycorrhizal fungus Pisolithus tinctorius, Phytochem. 40:1089-1091.

    Article  Google Scholar 

  • Besmer, Y. L., and Koide, R. T., 1999, Effect of mycorrhizal colonization and phosphorus on ethylene production by snapdragon (Antirrhinum majus L.) flowers, Mycorrhiza 9:161-166.

    Article  CAS  Google Scholar 

  • Beyrle, H., 1995, The role of phytohormones in the function and biology of mycorrhizae, in: Mycorrhiza,Structure, Function, Molecular Biology and Biotechnology, A. Varma and B. Hock, eds., Springer-Verlag,Berlin, Heidelberg, pp. 365-390.

    Google Scholar 

  • Bladergroen, M. R., and Spaink, H. P., 1998, Genes and signal molecules involved in the rhizobia leguminoseae symbiosis, Curr. Opinion Plant Biol. 1:353-359.

    Article  CAS  Google Scholar 

  • Boller, T., 1991, Ethylene in pathogenesis and disease resistance, in: The Plant Hormone Ethylene, A. K.Mattoo and J. C. Suttle, eds., CRC Press, Boca Raton, FL, pp. 293-314.

    Google Scholar 

  • Bragaloni, M., and Rea, E., 1996, Impatto di endofiti micorrizici isolati da dune sabbiose su piante di interesse agrario, Micologia Italiana 25:85-91.

    Google Scholar 

  • Bras, C. P., Jorda, M. A., Wijfjes, A. H. M., Harteveld, M., Stuurman, N., Thomas-Oates, J. E., and Spaink, H.P., 2000, A Lotus japonicus nodulation system based on heterologous expression of the fucosyl transferase NodZ and the acetyl transferase NolL in Rhizobium leguminosarum, Molecular Plant-Microbe Interact. 13:475-479.

    Article  CAS  Google Scholar 

  • Caba, J. M., Poveda, J. L., Gresshoff, P. M., and Ligero, F., 1999, Differential sensitivity of nodulation to ethylene in soybeans cv. Bragg and a supernodulating mutant, New Phytol. 142:233-242.

    Article  CAS  Google Scholar 

  • Caba, J. M., Recalde, L., and Ligero, F., 1998, Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa, Plant, Cell Environ. 21:87-93.

    Article  CAS  Google Scholar 

  • Caetano-Anolles, G., and Gresshoff, P. M., 1990, Early induction of feedback regulatory responses governing nodulation in soybean, Plant Sci. 71:69-81.

    Article  Google Scholar 

  • Carlson, R. W., Price, N. P. J., and Stacey, G., 1995, The biosynthesis of rhizobial lipo-oligosaccharide nodulation signal molecules, Mol. Plant-Microbe Interact. 7:684-695.

    Article  Google Scholar 

  • Chalutz, E., Lieberman, M., and Sisler, H. D., 1977, Methionine-induced ethylene production by Penicillium digitatum, Plant Physiol. 60:402-406.

    Article  PubMed  CAS  Google Scholar 

  • Charon, C., Sousa, C, Crespi, M., and Kondorosi, A., 1999, Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti, The Plant Cell 11:1953-1965.

    PubMed  CAS  Google Scholar 

  • Day, D. A., Carroll, B. J., Delves, A. C., and Gresshoff, P. M., 1989, Relationship between autoregulation and nitrate inhibition of nodulation in soybeans, Physiol. Plant. 75:37-42.

    Article  CAS  Google Scholar 

  • Devine, T. E., Kuykendall, L. D., and O’Neill, J. J., 1988, DNA homology group and the identity of bradyrhizobial strains producing rhizobitoxine-induced foliar chlorosis on soybean, Crop Sci. 28:938-941.

    Article  Google Scholar 

  • DeVries, H. E. II, Mudge, K. W., and Lardner, J. P., 1987, Ethylene production by several ectomycorrhizal fungi and effects on host root morphology, in: Mycorrhizae in the Next Decade, Practical Applications and Research Priorities, Proc. 7th North Amer. Conf. Mycorrhizae, May 3-8, 1987, Gainesville, FL, pp.245.

    Google Scholar 

  • Dexheimer, J., and Pargney, J. C., 1991, Comparative anatomy of the host-fungus interface in mycorrhizae,Experientia 47:312-320.

    Article  Google Scholar 

  • Ditengou, F. A., and Lapeyrie, F., 2000, Hypaphorine from the ectomycorrhizal fungus Pisolithus tinctorius counteracts activities of indole-3-acetic acid and ethylene but not synthetic auxins in Eucalypt seedlings,Mol. Plant-Microbe Interact. 13:151-158.

    Article  PubMed  CAS  Google Scholar 

  • Drennan, D. S. H., and Norton, C, 1972, The effect of Ethrel on nodulation in Pisum sativum L., Plant Soil 36:53-57.

    Article  CAS  Google Scholar 

  • Drevon, J. J., 1983, Various organisms that fix nitrogen, in: Technical Handbook on Symbiotic Nitrogen Fixation, Legume/Rhizobium, FAO, The United Nations 1 Biol. 2:1-4.

    Google Scholar 

  • Driessche, T. V., C, Kevers, C, and Collet, M., 1988, Acetabularia mediterranea and ethylene: Production in relation with development, circadian rhythms in emission and response to external application, J. Plant Physiol. 133:635-639.

    Article  Google Scholar 

  • Dugassa, G. D., von Alten, A., and Schönbeck, F., 1996, Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens, Plant Soil 185:173-182.

    Article  CAS  Google Scholar 

  • Duodu, S., Bhuvaneswari, T. V., Stokkermans, T. J. W., and Peters, N. K., 1999, A positive role for rhizobitoxine in Rhizobium-legume symbiosis, Molec. Plant-Microbe Inter. 12:1082-1089.

    Article  CAS  Google Scholar 

  • Epstein, E., Sagee, O., Cohen, J. D., and Garty, J., 1986, Endogenous auxin and ethylene in the lichen Ramalina duriaei, Plant Physiol. 82:1122-1125.

    Article  PubMed  CAS  Google Scholar 

  • Fearn, J. C, and LaRue, T. A., 1991, Ethylene inhibitors restore nodulation of sym 5 mutants of Pisum sativum L. cv. Sparkle, Plant Physiol. 96:239-244.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, L. J., 1984, Regulation of root development, Annu. Rev. Plant Physiol. 35:223-242.

    Article  PubMed  CAS  Google Scholar 

  • Fergus, C. L., 1954, The production of ethylene by Penicillium digitatum, Mycologia 46:543-555.

    Google Scholar 

  • Fernandez-Lopez, M., Goormachtig, S., Gao, M., D’Haeze, W., Montagu, M. V., and Holsters, M., 1998,Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata, Proc. Natl.Acad. Sci. USA 95:12724-12728.

    Article  PubMed  CAS  Google Scholar 

  • Frankenberger, W. T., Jr., and Arshad, M., 1995, Phytohormones in Soils: Microbial Production and Functions, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Garty, J., Kauppi, M., and Kauppi, A., 1995, Differential responses of certain lichen species to sulfur-containingsolutions under acidic conditions as expressed by the production of stress-ethylene, Environ. Res. 69:132-143.

    Article  PubMed  CAS  Google Scholar 

  • Garty, J., Karary, Y., Harel, J., and Lurie, S., 1993, Temporal and spatial fluctuations of ethylene production and concentrations of sulfur, sodium, chlorine and iron on/in the thallus cortex in the lichen Ramalina duriaei (de not.) Bagl., Environ. Exptl. Bot. 33:553-563.

    Article  CAS  Google Scholar 

  • Garty, J., Kloog, N., Wolfson, R., Cohen, Y., Karnieli, A., and Avni, A., 1997a,. The influence of air pollution on the concentration of mineral elements, on the spectral reflectance response and on the production of stress-ethylene in the lichen Ramalina duriaei, New Phytol. 137:587-597.

    Article  CAS  Google Scholar 

  • Garty, J., Kauppi, M., and Kauppi, A., 1997b, The influence of air pollution on the concentration of airborne elements and on the production of stress-ethylene in the lichen Usnea hirta (L.) Weber em. Mot.transplanted in urban sites in Oulu, N. Finland, Arch. Environ. Contam. Toxicol. 32:285-290.

    Article  PubMed  CAS  Google Scholar 

  • Garty, J., Kauppi, M., and Kauppi, A., 1997c, The production of stress ethylene relative to the concentration of heavy metals and other elements in the lichen Hypogymnia physodes, Environ. Toxicol. Chem. 16:2404-2408.

    CAS  Google Scholar 

  • Glick, B. R., Jacobson, C. B., Schwarze, M. M. K., and Pasternak, J. J., 1994a, Does the enzyme 1-aminocyclopropane-1-carboxylate deaminase play a role in plant growth-promotion by Pseudomonas putida GR12-2? in: Improving Plant Productivity with Rhizosphere Bacteria, M. H. Ryder, P. M.Stephens, and G. D. Bowen, eds., Commonwealth Scientific and Industrial Research Organization,Adelaide, Australia, pp. 150-152.

    Google Scholar 

  • Glick, B. R., Jacobson, C. B., Schwarze, M. M. K., and Pasternak, J. J., 1994b, 1-Aminocyclopropane-l-carboxylic acid deaminase mutants of the growth-promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate root elongation, Can. J. Microbiol. 40:911-915.

    Article  CAS  Google Scholar 

  • Goodlass, G., and Smith, K. A., 1979, Effects of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.), Plant Soil 51:387-395.

    Article  CAS  Google Scholar 

  • Goodwin, T. E., and Mercer, E. I., 1983, Introduction to Plant Biochemistry, 2nd Ed., Pergamon Press, Oxford,New York.

    Google Scholar 

  • Graham, J. H., and Linderman, R. G., 1980, Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum f. sp. pini, and by aseptically synthesized ectomycorrhizae and Fusarium-infected Douglas fir roots, Can. J. Microbiol. 26:1340-1347.

    Article  PubMed  CAS  Google Scholar 

  • Graham, J. H., and Linderman, R. G., 1981, Effect of ethylene on root growth, ectomycorrhiza formation, and Fusarium infection of Douglas fir, Can. J. Bot. 59:149-155.

    Article  CAS  Google Scholar 

  • Gresshoff, P. M., 1993, Molecular genetic analysis of nodulation genes in soybean, Plant Breeding Reviews 11:275-318.

    Google Scholar 

  • Grobbelaar, N., Clarke, B., and Hough, M. C, 1971, The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L., Plant Soil (Spec. Vol.), pp. 215-223.

    Google Scholar 

  • Guinel, F. C, and LaRue, T. A., 1991, Light microscopy study of nodule initiation in Pisum sativum L. cv.Sparkle and in its low-nodulating mutant E2 (sym 5), Plant Physiol 97:1206-1211.

    Article  PubMed  CAS  Google Scholar 

  • Guinel, F. C, and LaRue, T. A., 1992, Ethylene inhibitors partly restore nodulation to pea mutants E107 (brz.), Plant Physiol 99:515-518.

    Article  PubMed  CAS  Google Scholar 

  • Guinel, F. C, and Sloetjes, L. L., 2000, Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym 16), a pleiotropic mutant that nodulates poorly and has pale green leaves, J. Exptl. Bot. 51:885-894.

    Article  CAS  Google Scholar 

  • Hall, J. A., Peirson, D., Ghosh, S., and Glick, B. R., 1996, Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2, Israel J. Plant Sci. 44:37-42.

    Google Scholar 

  • Harley, J. L., and Smith, S. E., 1983, Mycorrhizal Symbiosis, Academic Press, London.

    Google Scholar 

  • Hayman, D. S., 1980, Mycorrhiza and crop production, Nature (London):287:487-488.

    Article  Google Scholar 

  • Heidstra, R., Yang, W. C, Yalcin, Y., Peck, S., Emons, A., van Kammen, A., and Bisseling, T., 1997, Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hairt ip growth in Rhizobium-legume interaction, Development 124:1781-1787.

    PubMed  CAS  Google Scholar 

  • Hirsch, A. M., and Fang, Y., 1994, Plant hormones and nodulation: What’s the connection? Plant Mol Biol 26:5-9.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, A. M., Fang, Y., Asad, S., and Kapulnik, Y., 1997, The role of phytohormones in plant-microbe symbiosis, Plant Soil 194:171-184.

    Article  CAS  Google Scholar 

  • Huang, T. C, and Chow, T. J., 1984, Ethylene production by blue-green algae, Bot. Bull. Acad. Sinica 25:81-86.

    CAS  Google Scholar 

  • Hunter, W. J., 1993, Ethylene production by root nodules and effect of ethylene on nodulation in Glycine max,Appl. Environ. Microbiol. 59:1947-1950.

    PubMed  CAS  Google Scholar 

  • Ishii, T., Shrestha, Y. H., Matsumoto, I., and Kadoya, K., 1996, Effect of ethylene on the growth of vesicular-arbuscular mycorrhizal fiingi on the mycorrhizal formation of trifoliate orange roots, J. Japan Soc. Hort.Sci. 65:525-529.

    Article  CAS  Google Scholar 

  • Jacobson, C. B., Pasternak, J. J., and Glick, B. R., 1994, Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2, Can. J. Microbiol 40:1019-1025.

    Article  CAS  Google Scholar 

  • Jahns, H. M., 1988, The establishment, individuality and growth of lichen thalli, Bot. J. Linnean Soc. 96:21-29.

    Article  Google Scholar 

  • Jahns, H. M, and Ott, S., 1990, Regulation of regenerative processes in lichens, Bibliotheca Lichenologica 38:243-252.

    Google Scholar 

  • Kauppi, M, Kauppi, A., and Garty, J., 1998, Ethylene produced by the lichen Cladina stellaris exposed to sulphur and heavy metal containing solutions under acidic conditons, New Phytol 139:537-547.

    Article  CAS  Google Scholar 

  • Kuykendall, L. D., Saxena, B., Devine, T. E., and Udell, S. E., 1992, Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov., Can. J. Microbiol 38:501-505.

    Article  CAS  Google Scholar 

  • Lange, O. L., Bilger, W., Rimke, S., and Schreiber, U., 1989, Chlorophyll fluorescence of lichens containing green and blue-green algae during hydration by water vapor uptake and by addition of liquid water, Bot.Acta 102:306-313.

    Google Scholar 

  • Lawrey, J. D., 1984, Biology of Lichenized Fungi, Praeger, New York.

    Google Scholar 

  • Lee, K. H., and LaRue, T. A., 1992a, Inhibition of nodulation of pea by ethylene, Plant Physiol. 99(Suppl.): 108.

    Google Scholar 

  • Lee, K. H., and LaRue, T. A., 1992b, Ethylene as a possible mediator of light- and nitrate-induced inhibition of nodulation of Pisum sativum L. cv. Sparkle, Plant Physiol 100:1334-1338.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. H., and LaRue, T. A., 1992c, Exogenous ethylene inhibits nodulation of Pisum sativum L. cv. Sparkle,Plant Physiol. 100:1759-1763.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. H., Fearn, J. C., Guinel, F. C., and LaRue, T. A., 1993, Ethylene and nodulation, in: New Horizons in Nitrogen Fixation, R. Palacios, J. Mora, and W. E. Newton, eds., Kluwer Academic Publishers,Dordrecht, Boston, London, pp. 303-308.

    Google Scholar 

  • Lerouge, p., Roche, P., Faucher, C, Maillet, F., Truehet, G., Prome, J.-C, and Denarie, J., 1990, Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal, Nature 344:781-784.

    Article  PubMed  CAS  Google Scholar 

  • Libbenga, K. R., and Harkes, P. A. A., 1973, Initial proliferation of cortical cells in the formation of root nodules in Pisum sativum L., Planta 114:17-28.

    Article  Google Scholar 

  • Lieberman, M., 1979, Biosynthesis and action of ethylene, Annu. Rev. Plant Physiol 30:533-591.

    Article  CAS  Google Scholar 

  • Lieberman, M., 1979, Biosynthesis and action of ethylene, Annu. Rev. Plant Physiol 30:533-591. Ligero, F., Lluch, C, and Olivares, J., 1986, Evolution of ethylene from roots of Medicago sativa plants inoculated with Rhizobium meliloti, J. Plant Physiol 125:361-365.

    Article  CAS  Google Scholar 

  • Ligero, F., Lluch, C, and Olivares, J., 1987, Evolution of ethylene from roots and nodulation rate of alfalfa (Medicago sativa L.) plants inoculated with Rhizobium meliloti as affected by the presence of nitrate, J.Plant Physiol 129:461-467.

    Article  CAS  Google Scholar 

  • Ligero, F., Caba, J. M., Lluch, C., and Olivares, J., 1991, Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxyvinylglycine, Plant Physiol. 97:1221-1225.

    Article  PubMed  CAS  Google Scholar 

  • Ligero, F., Poveda, J. L., Gresshoff, P. M, and Caba, J. M., 1999, Nitrate and inoculation enhanced ethylene biosynthesis in soybean roots as a possible mediator of nodulation control, J. Plant. Physiol. 154:482-488.

    Article  CAS  Google Scholar 

  • Livingston, W. H., 1991, Effect of methionine and 1-aminocyclopropane-l-carboxylic acid on ethylene production by Laccaria bicolor and L. laccata, Mycologia 83:236-241.

    Article  CAS  Google Scholar 

  • Lurie, S., and Garty, J., 1991, Ethylene production by the lichen Ramalina duriaei, Ann. Bot. 68:317-319.

    CAS  Google Scholar 

  • Markwei, C. M., and LaRue, T. A., 1997, Phenotypic characterization of sym21, a gene conditioning shoot-controlled inhibition of nodulation in Pisum sativum cv. Sparkle, Physiol. Plant. 100:927-932.

    Article  CAS  Google Scholar 

  • Martin, F., Lapeyrie, F., and Tagu, D., 1997, Altered gene expression during ectomycorrhizal development, in:The Mycota, Vol., V, A. G. Carroll and P. Tudzynski, eds., Springer-Verlag, Berlin, pp. 223-242.

    Google Scholar 

  • Mattoo, A. K., and Suttle, J. C, eds., 1991, The Plant Hormone Ethylene, CRC Press, Boca Raton.

    Google Scholar 

  • McArthur, D. A. J., and Knowles, N. R., 1992, Resistance response of potato to vesicular-arbuscular mycorrhizal fungi under varying abiotic phosphorus levels, Plant Physiol. 100:341-351.

    Article  PubMed  CAS  Google Scholar 

  • Minamisawa, K., 1989, Comparison of extracellular polysaccharide composition, rhizobitoxine production, and hydrogenase phenotype among various strains of Bradyrhizobium japonicum, Plant Cell Physiol. 30:877-884.

    CAS  Google Scholar 

  • Minamisawa, K., 1990, Division of rhizobitoxine-producing and hydrogen-uptake positive strains of Bradyrhizobium japonicum by nifDKE sequence divergence, Plant Cell Physiol. 31:81-89.

    CAS  Google Scholar 

  • Minamisawa, K., and Kume, N., 1987, Determination of rhizobitoxine and dihydrorhizobitoxine in soybean plants by amino acid analyzer, Soil Sci. Plant Nutr. 33:645-649.

    Article  CAS  Google Scholar 

  • Minamisawa, K., Fukai, K., and Asami, T., 1990, Rhizobitoxine inhibition of hydrogenase synthesis in free-living Bradyrhizobium japonicum, J. Bacteriol. 172:4505-4509.

    PubMed  CAS  Google Scholar 

  • Minamisawa, K., Onodera, S., Tanimura, Y., Kobayashi, N., Yuhashi, K.-I., and Kubota, M., 1997, Preferential nodulation of Glycine max, Glycine soja, and Macroptilium atropurpureum by two Bradyrhizobium species japonicum and elkanii, FEMS Microbiol. Ecol. 24:49-56.

    CAS  Google Scholar 

  • Morandi, D., 1989, Effect of xenobiotics on endomycorrhizal infection and isoflavonoid accumulation in soybean roots, Plant Physiol Biochem. 27:697-701.

    CAS  Google Scholar 

  • Nadian, H., Smith, S. E., Alston, A. M., Murray, R. S., and Siebbert, B. D., 1998, Effect of soil compaction on phosphorus uptake and growth of Trifolium subterraneum colonized by four species of vesiculararbuscular mycorrhizal fungi, New Phytol. 140:155-165.

    Article  Google Scholar 

  • Nehls, U., Beguiristain, T., Ditengou, F. A., Lapeyrie, F., and Martin, F., 1998, The expression of a symbiosisregulated gene in eucalypt roots is regulated by auxins and hypaphorine, the tryptophan betaine of the ectomycorrhizal basidiomycete Pisolithus tinctorius, Planta 207:296-302.

    Article  PubMed  CAS  Google Scholar 

  • Ott, S., 1988, Photosymbiodemes and their development in Peltigera venosa, Lichenologist 20:361-368.

    Article  Google Scholar 

  • Ott, S., 1993, The influence of light on the ethylene production by lichens, Bibliotheca Lichenologica 53:185-190.

    CAS  Google Scholar 

  • Ott, S., and Schieleit, P., 1994, Influence of exogenous factors on the ethylene production by lichens, I.Influence of water content and water status conditions on ethylene production, Symbiosis 16:187-201.

    CAS  Google Scholar 

  • Ott, S., and Zwoch, I., 1992, Ethylene production by lichens, Lichenologist 24:73-80.

    Google Scholar 

  • Owens, L. D., Liebermann, M., and Kunishi, A., 1971, Inhibition of ethylene production by rhizobitoxine, Plant Physiol. 48:1-4.

    Article  PubMed  CAS  Google Scholar 

  • Owens, L. D., Thompson, J. F., Pitcher, R. G., and Williams, T., 1972, Structure of rhizobitoxine, an antimetabolic enol-ether-acid from Rhizobium japonicum, J. Chem. Soc. Chem. Commun. 1972: 714.

    Article  Google Scholar 

  • Penmetsa, R. V., and Cook, D. R., 1997, A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont, Science 275:527-530.

    Article  PubMed  CAS  Google Scholar 

  • Perotto, S., Brewin, N. J., and Kannenberg, E. L., 1994, Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of Rhizobium leguminosarum strain 3841, Molec. Plant-Microbe. Interac. 7:99-112.

    Article  CAS  Google Scholar 

  • Peters, N. K., and Crist-Estes, D. K., 1989, Nodule formlation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine, Plant Physiol. 91:690-693.

    Article  PubMed  CAS  Google Scholar 

  • Poveda, J. L., Caba, J. M., Lluch, C., and Ligero, F., 1993, Nitrate, ethylene and nodulation, Plant Physiol. 102:176 (Abstract 1010).

    Google Scholar 

  • Remner, S. B., Ahmadjian, V., and Livdahl, T. P., 1986, Effects of IAA (indole-3-acetic acid) and kinetin (6-furfuryl-amino-purine) on the synthetic lichen Cladonia cristatella and its isolated symbionts, Lichen Physiol. Biochem. 1:1-25.

    Google Scholar 

  • Ruan, X., and Peters, N. K., 1992, Isolation and characterization of rhizobitoxine mutants of Bradyrhizobium japonicum, J. Bacteriol. 174:3467-3473.

    PubMed  CAS  Google Scholar 

  • Rupp, L. A., and Mudge, K. W., 1985a, Is ethylene involved in ectomycorrhizae formation on mungo pine, in:Proc. 6th North Amer. Conf. on Mycorrhizae, June 25-29, 1984, Bend, OR, pp. 355.

    Google Scholar 

  • Rupp, L. A., and Mudge, K. W., 1985b, Ethephon and auxin induce mycorrhiza-like changes in the morphology of root organ cultures of mugo pine, Physiol. Plant. 64:316-322.

    Article  CAS  Google Scholar 

  • Rupp, L. A., Mudge, K. W., and Negm, F. B., 1989a, Involvement of ethylene in ectomycorrhiza formation and dichotomous branching of roots of mugo pine seedlings, Can. J. Bot. 67:477-482.

    Article  CAS  Google Scholar 

  • Rupp, L. A., DeVries, H. E., II, and Mudge, K. W., 1989b, Effect of aminocyclopropane carboxylic acid and aminoethoxyvinylglycine on ethylene production by ectomycorrhizal fungi, Can. J. Bot. 67:483-485.

    Article  CAS  Google Scholar 

  • Scagel, C. F., and Linderman, R. G., 1994, Increases in endogenous IAA content of conifer roots mediated by mycorrhizal fungi and exogenously applied plant growth regulators, Plant Physiol. 105(Suppl):143 (Abstract 781).

    Google Scholar 

  • Scagel, C. F., and Linderman, R. G., 1998a, Relationships between differential in vitro indole-acetic acid or ethylene production capacity by ectomycorrhizal fungi and conifer seedling responses in symbiosis,Symbiosis 24:13-34.

    CAS  Google Scholar 

  • Scagel, C. F., and Linderman, R. G., 1998b, Influence of ectomycorrhizal fungal inoculation on growth and root IAA concentrations of transplanted conifers, Tree Physiol. 18:739-747.

    Article  PubMed  CAS  Google Scholar 

  • Schieleit, P., and Ott, S., 1996, Ethylene production and 1-aminocyclopropane-1-carboxylic acid content of lichen bionts, Symbiosis 21:223-231.

    CAS  Google Scholar 

  • Schmidt, J. S., Harper, J. E., Hoffman, T. K., and Bent, A. F., 1999, Regulation of soybean nodulation independent of ethylene signalling, Plant Physiol. 119:951-959.

    Article  PubMed  CAS  Google Scholar 

  • Shantharam, S., and Mattoo, A. K., 1997, Enhancing biological nitrogen fixation: An appraisal of current and alternative technologies for N input into plants, Plant Soil 194:205-216.

    Article  CAS  Google Scholar 

  • Shirtliffe, S. J., Vessey, J. K., Buttery, B. R., and Park, S. J., 1996, Comparison of growth and N accumulation of common bean (Phaseolus vulgaris L.) cv. OAC Rico and its two nodulation mutants, R69 and R99,Can. J. Plant. Sci. 76:73-83.

    Article  Google Scholar 

  • Spaink, H. P., 1995, The molecular basis of infection and nodulation by rhizobia: The ins and outs of sympathogenesis, Annu. Rev. Phytopathol. 33:345-368.

    Article  PubMed  CAS  Google Scholar 

  • Spaink, H. P., 1997, Ethylene as a regulator of Rhizobium infection, Trends Plant Sci. 2:203-204.

    Article  Google Scholar 

  • Spaink, H. P., Sheeley, D. M., van Brussel, A. A. N., Glushka, J., York, W. S., Tak, T., Geiger, O., Kennedy, E.P., Reinhold, V. N., and Lughtenberg, B. J. J., 1991, A novel highly unsaturated fatty acid moeity of lipo-oligosaccharide signals determines host specificity of Rhizobium, Nature 354:125-130.

    Article  PubMed  CAS  Google Scholar 

  • Spalding, D. H., and Lieberman, M., 1965, Factors affecting the production of ethylene by Penicillium digitatum, Plant Physiol. 40:645-648.

    Article  PubMed  CAS  Google Scholar 

  • Stein, A., and Fortin, J. A., 1990, Pattern of root initiation by an ectomycorrhizal fungus on hypocotyl cuttings of Larix laricina, Can. J. Bot. 68:492-498.

    Article  Google Scholar 

  • Staehelin, C, Grando, J„ Muller, J., Wiemken, A., Mellor, R. B., Felix, G., Regenass, M., Broughton, W. J., and Boiler, T., 1994a, Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases, Proc. Natl. Acad. Sci. USA 91:2196-2200.

    Article  PubMed  CAS  Google Scholar 

  • Staehelin, C, Schultze, M., Kondorosi, E., Kondorosi, A., Mellor, R. B., and Boiler, T., 1994b, Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by chitinases, Plant J.5:319-330.

    Article  CAS  Google Scholar 

  • Stokkermans, T. J. W., Sanjuan, J., Ruan, X., Stacey, G., and Peters, N. K., 1992, Bradyrhizobium japonicum rhizobitoxine mutants with altered host-range on Rj4 soybean, Plant Physiol. 99:110.

    Google Scholar 

  • Strzelczyk, E., Kampert, M., and Pachlewski, R., 1994, The influence of pH and temperature on ethylene production by mycorrhizal fungi of pine, Mycorrhiza 4:193-196.

    Article  CAS  Google Scholar 

  • Suganuma, N., Yamauchi, H., and Yamamoto, K., 1995, Enhanced production of ethylene by soybean roots after inoculation with Bradyrhizobium japonicum, Plant Sci. 111:163-168.

    Article  CAS  Google Scholar 

  • Tanimoto, M., Roberts, K., and Dolan, L., 1995, Ethylene is a positive regulator of root hair development in Arabidopsis thaliana, Plant J. 8:943-948.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, K. C., and Spencer, M., 1977, L-Methionine as an ethylene precursor in Saccharomyces cerevisiae,Can. J. Microbiol. 23:1669-1674.

    Article  PubMed  CAS  Google Scholar 

  • Truchet, G., Roche, P., Lerouge, P., Vasse, J., Camut, S., de Billy, F., Prome, J.-C, and Denarie, J., 1991,Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa,Nature 351:670-673.

    Article  CAS  Google Scholar 

  • van Brussel, A. A. N., Zaat, S. A. J., Cremers, H. C. J. C, Wijffelman, C. A., Pees, E., Tak, T., and Lugtenberg, B. J. J., 1986, Role of plant root exudate and sym plasmid-localized nodulation genes in the synthesis by Rhizobium leguminosarum of Tsr factor, which causes thick and short roots on common Vetch., J.Bacteriol. 165:517-522.

    PubMed  Google Scholar 

  • van Spronsen, P. C., van Brussel, A. A. N., and Kijne, J. W., 1995, Nod factors produced by Rhizobium leguminosarum biovar. viciae induce ethylene-related changes in root cortical cells of Vicia sativa ssp. nigra, European J. Cell Biol. 68:463-469.

    Google Scholar 

  • van Workum, W. A. T., van Brussel, A. A. N., Tak, T., Wijffelman, C. A., and Kijne, J. W., 1995, Ethylene prevents nodulation of Vicia sativa ssp. nigra by exopolysaccharide-deficient mutants of Rhizobium leguminosarum bv. viciae, Molec. Plant-Microbe Interact. 8:278-285.

    Article  Google Scholar 

  • Vierheilig, H., Alt, M., Mohr, U., Boiler, T., and Wiemken, A., 1994, Ethylene biosynthesis and activities of chitinase and ( β -l,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae,J. Plant. Physiol. 143:337-343.

    Article  CAS  Google Scholar 

  • Xie, Z.-P., Staehelin, C, Wiemken, A., and Boiler, T., 1996, Ethylene responsiveness of soybean cultivars characterized by leaf senescence, chitinase induction and nodulation, J. Plant Physiol 149:690-694.

    Article  CAS  Google Scholar 

  • Xiong, K., and Fuhrmann, J. J., 1996, Soybean response to nodulation by wild-type and an isogenic Bradyrhizobium elkanii mutant lacking rhizobitoxine production, Crop. Sci. 36:1267-1271.

    Article  Google Scholar 

  • Yasuta, T., Satoh, S., and Minamisawa, K., 1999, New assay for rhizobitoxine based on inhibition of 1-aminocyclopropane-1-carboxylate synthase, Appl. Environ. Microbiol. 65:849-852.

    PubMed  CAS  Google Scholar 

  • Yuhashi, K.-I., Ichikawa, N., Ezura, H., Akao, S., Minakawa, Y., Nukui, N., Yasuta, T., and Minamisawa, K., 2000, Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum, Appl. Environ. Microbiol. 66:2658-2663.

    Article  PubMed  CAS  Google Scholar 

  • Zaat, S. A. J., van Brussel, A. A. R, Tak, T., Lugtenberg, B. J. J., and Kijne, J. W., 1989, The ethylene-inhibitor aminoethoxyvinylglycine restores normal nodulation by Rhizobium letguminosarum biovar. viciae on Vicia sativa ssp. nigra by suppressing the “thick and short roots” phenotype, Planta 177:141-150.

    Article  CAS  Google Scholar 

  • Zhao, Z., Wang, X., and Guo, X., 1992, Selection of fungi for the production of ectomycorrhizal fungus inoculum, Acta Microbiol. Sin. 32:227-232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arshad, M., Frankenberger, W.T. (2002). Ethylene in Symbiosis. In: Ethylene. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0675-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0675-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5189-4

  • Online ISBN: 978-1-4615-0675-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics