Skip to main content

Factors Affecting Microbial Production of Ethylene

  • Chapter
Ethylene

Abstract

Since the publications of Biale (1940) and Miller et al. (1940) on C2H4 production by Penicillium digitatum, several workers have screened numerous microorganisms for their ability to produce C2H4. These studies revealed that a diverse group of soil microbiota, including pathogens, are very active in producing C2H4. According to Primrose (1979), C2H4 is synthesized by many species of bacteria and fungi, but is oxidized by only a limited number of microorganisms. Out of 166 strains of fungi, yeast, bacteria, and actinomycetes, 49 produced C2H4 (Fukuda et al., 1984). Among them 62% were molds, 20% were yeasts, 21% were bacteria, and 6% were actinomycetes. Out of 228 soil fungi tested by Ilag and Curtis (1968), 58 (25%) produced C2H4 , whereas 20 unidentified actinomycetes also produced C2H4. El-Sharouny (1984) reported that 31% of 80 fungal species isolated from diseased roots were capable of producing C2H4. Arshad and Frankenberger (1989) found that corn rhizosphere is quite rich with microbiota capable of producing C2H4 derived from L-methionine (MET), and among these, fungi were the most preponderant. Babiker and Pepper (1984) isolated 14 soil fungi that produced C2H4 in the presence of MET. Recently, Arshad and Akhter (unpublished data) screened rhizosphere microflora of maize, wheat, tomato and potato and found that fungal isolates predominently produced C2H4 from exogenous supplied L-MET or 2-oxo-4-methylthiobutyric acid (KMBA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Achilea, O., Chalutz, E., Fuchs, Y., and Rot, I., 1985, Ethylene biosynthesis and related physiological changes in Penicillium digitatum-infected grapefruit (Citrus paradisi), Physiol. Plant Pathol. 26:125-134.

    CAS  Google Scholar 

  • Amagai, A., 1984, Induction by ethylene of macrocyst formation in the cellular slime mold. Dictyostelium mucoroides, J. Gen. Microbiol. 130:2961-2965.

    CAS  Google Scholar 

  • Amagai, A., and Maeda, Y., 1992, The ethylene action in the development of cellular slime molds: An analogy to higher plants, Protoplasma 167:159-168.

    CAS  Google Scholar 

  • Archer, S. A., 1976, Ethylene and fungal growth, Trans. Br. My col. Soc. 67:325-326.

    Google Scholar 

  • Arshad, M., and Frankenberger, W. T., Jr., 1989, Biosynthesis of ethylene by Acremonium falciforme, Soil Biol. Biochem. 21:633-638.

    CAS  Google Scholar 

  • Axelrood-McCarthy, P. E., and Linderman, R. G., 1981, Ethylene production by cultures of Cylindrocladium floridanum and C. scoparium, Phytopathol. 71:825-830.

    CAS  Google Scholar 

  • Azcon-Aguilar, C, Rodriquez-Navarro, D. N., and Barea, J. M., 1981, Effects of ethrel on the formation and responses to VA mycorrhiza in medicago and triticum, Plant Soil 60:461-468.

    CAS  Google Scholar 

  • Babiker, H. M, and Pepper, I. L., 1984, Microbial production of ethylene in desert soils. Soil Biol. Biochem. 16:559-564.

    CAS  Google Scholar 

  • Balis, C., 1976, Ethylene-induced volatile inhibitors causing soil fungistatis, Nature 259:112-114.

    CAS  Google Scholar 

  • Barkai-Golan, R., and Lavy-Meir, G., 1989, Effects of ethylene on the susceptibility to Botrytis cinerea infection of different tomato genotypes, Ann. Appl. Biol. 114:391-396.

    CAS  Google Scholar 

  • Biale, J. B., 1940, Effect of emanations from several species of fungi on respiration and color development of citrus fruits, Science 91:458-459.

    PubMed  CAS  Google Scholar 

  • Billington, D. C., Golding, B. T., and Primrose, S. B., 1979, Biosynthesis of ethylene from methionine, Biochem. J. 182:827-836.

    PubMed  CAS  Google Scholar 

  • Blaschke, H., 1977, Der Einfluβ von Temperatur und Feuchtigkeit auf die Bildung von Athylen in Fichtenstreu, Flora 166:203-209.

    CAS  Google Scholar 

  • Bonn, W. G., Sequeira, L., and Upper, C. D., 1975, Technique for the determination of the rate of ethylene production by Pseudomonas solanacearum, Plant Physiol. 56:688-691.

    PubMed  CAS  Google Scholar 

  • Bonner, J. T., 1973, Hormones in social amoebae, in: Hormonal Control of Growth and Differentiation, Vol. 2, J. Lobue and A. S. Gordon, eds., Academic Press, New York, NY, pp. 84-98.

    Google Scholar 

  • Borodina, E. V., Tirranen, L. S., Titova, G. T., and Kalacheva, G. S., 1997, The effects of acetaldehyde and ethylene on growth of reference cultures of microorganisms, Russian J. Ecol. 28:197-199.

    Google Scholar 

  • Brooks, C., 1944, Stem end rot of oranges and factors affecting its control, J. Agr. Res. 68:363-381.

    CAS  Google Scholar 

  • Brown, G. E., and Lee, H. S., 1993, Interactions of ethylene with citrus stem-end rot caused by Diplodia natalensis, Phytopathol 83:1204-1208.

    CAS  Google Scholar 

  • Brown-Skrobot, S., Brown, L. R., and Filer, T. H., Jr., 1984, Ethylene and carbon monoxide production by Septoria musiva, Dev. Indus. Microbiol. 25:749-755.

    CAS  Google Scholar 

  • Brown-Skrobot, S., Brown, L. R., and Filer, T. H., Jr., 1985, Mechanism of ethylene and carbon monoxide production by Septoria musiva, Dev. Indus. Microbiol. 26:567-573.

    CAS  Google Scholar 

  • Burg, S. P., 1973, Ethylene in plant growth, Proc. Natl. Acad. Sci. USA 70:591-597.

    PubMed  CAS  Google Scholar 

  • Chalutz, E., and DeVay, J. E., 1969, Production of ethylene in vitro and in vivo by Ceratocystis fimbriata in relation to disease development, Phytopathol. 59:750-755.

    CAS  Google Scholar 

  • Chalutz, E., and Lieberman, M., 1978, Inhibition of ethylene production in Penicillium digitatum, Plant Physiol. 61:111-114.

    PubMed  CAS  Google Scholar 

  • Chalutz, E., Lieberman, M., and Sisler, H. D., 1977, Methionine-induced ethylene production by Penicillium digitatum, Plant Physiol. 60:402-406.

    PubMed  CAS  Google Scholar 

  • Chalutz, E., Mattoo, A. K., Anderson, J. D., and Lieberman, M., 1978, Regulation of ethylene production by phosphate in Penicillium digitatum, Plant Cell Physiol. 19:189-196.

    CAS  Google Scholar 

  • Chalutz, E., Mattoo, A. K., and Fuchs, Y., 1980, Biosynthesis of ethylene: The effect of phosphate, Plant Cell Environ. 3:349-356.

    CAS  Google Scholar 

  • Chandhoke, V., Goodell, B., Jellison, J., and Fekete, F. A., 1992, Oxidation of 2-keto-4-thiomethylbutyric acid (KTBA) by iron-binding compounds produced by the wood-decaying fungus Gloeophyllum trabeum, FEMS Microbiol Lett. 90:263-266.

    CAS  Google Scholar 

  • Chou, T. W., and Yang, S. F., 1973, The biogenesis of ethylene in Penicillium digitatum, Arch. Biochem. Biophys. 157:73-82.

    PubMed  CAS  Google Scholar 

  • Coleman, L. W., and Hodges, C. F., 1986. The effect of methionine on ethylene and 1-aminocyelopropane-l-carboxylic acid production by Bipolaris sorokiniana, Phytopathol. 76:851-855.

    CAS  Google Scholar 

  • Considine, P. J., and Patching, J. W., 1975, Ethylene production by microorganisms grown on phenolic acids, Ann. Appl Biol. 81:115-119.

    PubMed  CAS  Google Scholar 

  • Considine, P. J., Flynn, N., and Patching, J. W., 1977, Ethylene production by soil microorganisms, Appl. Environ. Microbiol. 33:977-979.

    PubMed  CAS  Google Scholar 

  • Dasilva, E. J., Henriksson, E., and Henriksson, L. E., 1974, Ethylene production by fungi, Plant Sci. Lett. 2:63-66.

    CAS  Google Scholar 

  • Dimond, A. E., and Waggoner, P. E., 1953, The cause of epinastic symptoms in Fusarium wilt of tomatoes, Phytopathol. 43:663-669.

    CAS  Google Scholar 

  • Dutta, B. K., and Deb, P. R., 1984, Sporostatic effect of ethylene and its possible role in soil fungistasis,Microbios Lett. 27:31-35.

    CAS  Google Scholar 

  • Elad, Y., 1988, Involvement of ethylene in the disease caused by Botrytis cinerea on rose and carnation flowers and the possibility of control, Ann. Appl. Biol. 113:589-598.

    CAS  Google Scholar 

  • El-Kazzaz, M. K., Sommer, N. F., and Kader, A. A., 1983, Ethylene effects on in vitro and in vivo growth of certain postharvest fruit-infecting fungi, Phytopathol. 73:998-1001.

    CAS  Google Scholar 

  • El-Sharouny, H. M., 1984, Screening of ethylene producing root infecting fungi in Egyptian soil, Mycopathologia 85:13-15.

    CAS  Google Scholar 

  • Fergus, C. L., 1954, The production of ethylene by Penicillium digitatum, Mycologia 46:543-555.

    Google Scholar 

  • Filer, T. H., Brown, L. R., Brown-Sarobot, S., and Martin, S., 1984, Production of ethylene and carbon monoxide by microorganisms, J. Mississippi Acad. Sci. 29:27-31.

    CAS  Google Scholar 

  • Flaishman, M. A., and Kolattukudy, P. E., 1994, Timing of fungal invasion using host’s ripening hormone as a signal, Proc. Natl. Acad. Sci. USA 91:6579-6583.

    PubMed  CAS  Google Scholar 

  • Freebairn, H. T., and Buddenhagen, I. W., 1964, Ethylene production by Pseudomonas solanacearum, Nature 202:313-314.

    PubMed  CAS  Google Scholar 

  • Fujii, T., Ogawa, T., and Fukuda, H., 1985, A screening system for microbes which produce olefin hydrocarbons, Agric. Biol. Chem. 49:651-657.

    CAS  Google Scholar 

  • Fukuda, H., 1984, Microbial production of gaseous hydrocarbons and tasks for its practical use (challenge to cope with unstable oil supply forecast in 21st Century), Chem. Economy Engineer. Review 16:18-22.

    CAS  Google Scholar 

  • Fukuda, H., and Ogawa, T., 1991, Microbial ethylene production, in: The Plant Hormone Ethylene, A. K. Mattoo and J. C. Suttle, eds., CRC Press, Boca Raton, FL, pp. 279-292.

    Google Scholar 

  • Fukuda, H., Fujii, T., and Ogawa, T., 1984, Microbial production of C2-hydrocarbons, ethane, ethylene, and acetylene, Agric. Biol Chem. 48:1363-1365.

    CAS  Google Scholar 

  • Fukuda, H., Fujii, T., and Ogawa, T., 1986, Preparation of a cell-free ethylene-forming system from Penicillium digitatum, Agric. Biol. Chem. 50:977-981.

    CAS  Google Scholar 

  • Fukuda, H., Fujii, T., and Ogawa, T., 1988. Production of ethylene by a growth-suppressed mutant of Penicillium digitatum, Biotechnol. Bioeng. 31:620-623.

    PubMed  CAS  Google Scholar 

  • Fukuda, H., Takahashi, M., Fujii, T., and Ogawa, T., 1989a, Ethylene production from L-methionine by Cryptococcus albidus, J. Ferment. Bioeng. 67:173-175.

    CAS  Google Scholar 

  • Fukuda, H., Kitajima, H., Fujii, T., Tazaki, M., and Ogawa, T., 1989b, Purification and some properties of a novel ethylene-forming enzyme produced by Penicillium digitatum, FEMS Microbiol. Lett. 59:1-6.

    CAS  Google Scholar 

  • Fukuda, H., Takahashi, M., Fujii, T., Tazaki, M., and Ogawa, T., 1989c, An NADH:Fe(III) EDTA oxidoreductase from Cryptococcus albidus: An enzyme involved in ethylene production in vivo? FEMS Microbiol. Lett. 60:107-112.

    CAS  Google Scholar 

  • Gibson, M. S., and Young, R. E., 1966, Acetate and other carboxylic acids as precursors of ethylene, Nature 210:529-530.

    PubMed  CAS  Google Scholar 

  • Goel, R. K., and Jhooty, J. S., 1987, Stimulation of germination of teliospores of Urocystis agropyri by volatiles from plant tissues, Ann. Appl Biol. 111:295-300.

    Google Scholar 

  • Goto, M., and Hyodo, H., 1987, Ethylene production by cell-free extract of the Kudzu strain of Pseudomonas syringae pv. phaseolicola, Plant Cell Physiol. 28:405-414.

    CAS  Google Scholar 

  • Goto, M., Ishida, Y., Takikawa, Y., and Hyodo, H., 1985, Ethylene production by the Kudzu strain of Pseudomonas syringae pv. phaseolicola causing halo blight in Pueraria lobata (Wild) Ohwi, Plant Cell Physiol 26:14-150.

    Google Scholar 

  • Goto, M., Yaguchi, Y., and Hyodo, H., 1980, Ethylene production in citrus leaves infected with Xanthomonas citri and its relation to defoliation, Physiol Plant. Pathol 16:343-350.

    CAS  Google Scholar 

  • Graham, J. H., and Linderman, R. G., 1980, Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum f. sp. pini, and by aseptically synthesized ectomycorrhizae and Fusarium-infected Douglas fir roots, Can. J. Microbiol 26:1340-1347.

    PubMed  CAS  Google Scholar 

  • Graham, J. H., and Linderman, R. G., 1981, Effect of ethylene on root growth, ectomycorrhiza formation, and Fusarium infection of Douglas-fir, Can. J. Bot. 59:149-155.

    CAS  Google Scholar 

  • Hahm, D. H., Kwak, M. Y., Bae, M., and Rhee, J. S., 1992, Effect of dissolved oxygen tension on microbial ethylene production in continuous culture, Biosci. Biotechnol Biochem. 56:1146-1147.

    CAS  Google Scholar 

  • Hanke, M., and Dollwet, H. H. A., 1976, The production of ethylene by certain soil fungi, Sci. Biol J. 2:227-230.

    Google Scholar 

  • Hill, T. F., Jr. and Lyda, S. D., 1976, Gas exchanges by Phymatotrichum omnivorum in a closed, axenic system, Mycopathologia 59:143-147.

    CAS  Google Scholar 

  • Hottiger, T., and Boller, T., 1991, Ethylene biosynthesis in Fusarium oxysporum f. sp. tulipae proceeds from glutamate/2-oxoglutarate and requires oxygen and ferrous ions, Arch. Microbiol 157:18-22.

    CAS  Google Scholar 

  • Ilag, L., and Curtis, R. W., 1968, Production of ethylene by fungi, Science 159:1357-1358.

    PubMed  CAS  Google Scholar 

  • Ince, J. E., and Knowles, C. J., 1985, Ethylene formation by cultures of Escherichia coli, Arch. Microbiol 141:209-213.

    PubMed  CAS  Google Scholar 

  • Ince, J. E., and Knowles, C. J., 1986, Ethylene formation by cell-free extracts of Escherichia coli, Arch. Microbiol 146:151-158.

    PubMed  CAS  Google Scholar 

  • Ishii, T., Shrestha, Y. H., Matsumoto, I., and Kadoya, K., 1996, Effect of ethylene on the growth of vesicular-arbuscular mycorrhizal fungi and on the myeorrhizal formation of trifoliate orange roots, J. Japan Soc. Hort. Sci. 65:525-529.

    CAS  Google Scholar 

  • Jacobsen, D. W., and Wang, C. H., 1968, The biogenesis of ethylene in Penicillium digitatum, Plant Physiol. 43:1959-1966.

    PubMed  CAS  Google Scholar 

  • Johnson, L. B., Davis, L. C, and Stuteville, D. L., 1980, Ethane and ethylene evolution from alfalfa seedlings infected with Peronospora trifoliorum, Physiol. Plant Path. 16:155-162.

    CAS  Google Scholar 

  • Kapulnik, E., Mattoo, A. K. , Chalutz, E., and Chet, I., 1983, The relationship between the production of ethylene by certain fungi, their enzyme constitution, and their ability to accumulate intracellular phosphate, Z. Pflazenphysiol 109:347-354.

    CAS  Google Scholar 

  • Kepczynski, J., and Kepczynska, E., 1977, Effect of ethylene on germination of fungal spores causing fruit rot, Fruit Science Reports (Poland) 4:31-35.

    CAS  Google Scholar 

  • Kevers, C, Driessche, T. V., and Gaspar, T., 1989, Relationship between ethylene and ethane production by whole Acetabularia mediterranea cells and by microsomal fractions, Saussurea 19:121-123.

    Google Scholar 

  • Kreslavskii, V. D., Markarov, A. D., Brandt, A. B., Kiseleva, M.I., Mukhin, E. N., Ruzieva, R. Kh., Yakumin, A. F., and Rudendo, T. I., 1988, Effects of red light, phytohormones, and dichlorophenylurea derivatives on ethylene evolution by chlorella, Sov. Plant Physiol. 35:889-896.

    Google Scholar 

  • Kutsuki, H., and Gold, M. H., 1982, Generation of hydroxyl radical and its involvement in lignin degradation by Phanerochaete chrysosporium, Biochem. Biophys. Res. Commun. 109:320-327.

    PubMed  CAS  Google Scholar 

  • Lindberg, T., Granhall, U., and Berg, B., 1979, Ethylene formation in some coniferous forest soils, Soil Biol Biochem. 11:637-643.

    CAS  Google Scholar 

  • Lockard, J. D., and Kneebone, L. R., 1962, Investigation of the metabolic gases produced by Agaricus bisporus (Large) Sing, Mushroom Sci. 5:281-299.

    Google Scholar 

  • Lockhart, C. L., Forsyth, F. R., and Eaves, C. A., 1968, Effect of ethylene on development of Gloeosporium album in apple and on growth of the fungus in culture, Can. J. Plant Sci. 48:557-559.

    CAS  Google Scholar 

  • Lu, S.-F., Tzeng, D. D., and Hsu, S.-T., 1989, In vitro and in vivo ethylene production in relation to pathogenesis of Pseudomonas solanacearum (Smith) on Lycopersicon esculentum M., Plant Protection Bull. 31:60-76.

    CAS  Google Scholar 

  • Lynch, J. M., 1972, Identification of substrates and isolation of microorganisms responsible for ethylene production in soil, Nature 240:45-46.

    CAS  Google Scholar 

  • Lynch, J. M., 1974, Mode of ethylene formation by Mucor hiemalis, J. Gen. Microbiol. 83:407-411.

    Google Scholar 

  • Lynch, J. M., 1975, Ethylene in soil, Nature 256:576-577.

    CAS  Google Scholar 

  • Lynch, J. M., and Harper, S. H. T., 1974, Formation of ethylene by a soil fungus, J. Gen. Microbiol. 80:187-195.

    Google Scholar 

  • Mansouri, S., and Bunch, A. W., 1989, Bacterial ethylene synthesis from 2-oxo-4-thiobutyric acid and from methionine, J. Gen. Microbiol. 135:2819-2827.

    PubMed  CAS  Google Scholar 

  • Mattoo, A. K., Baker, J. E., Chalutz, E., and Liebermann, M, 1977, Effect of temperature on the ethylene-synthesizing systems in apple, tomato, and in Penicillium digitatum. Plant Cell Physiol. 18:715-719.

    CAS  Google Scholar 

  • Mattoo, A. K., Chalutz, E., Anderson, J. D., and Lieberman, M., 1979, Characterization of the phosphate-mediated control of ethylene production by Penicillium digitatum, Plant Physiol. 64:55-60.

    PubMed  CAS  Google Scholar 

  • Meheriuk, M., and Spencer, M., 1964, Ethylene production during germination of oat seeds and Penicillium digitatum spores, Can. J. Bot. 42:337-340.

    CAS  Google Scholar 

  • Michniewicz, M., Czerwinska, E., Rozej, B., and Bobkiewicz, W., 1983, Control of growth and development of isolates of Fusarium culmorum (W.G.Sm.) Sacc. of different pathogenicity to wheat seedlings by plant growth regulators. II. Ethylene, Acta Physiol. Plant. 5:189-198.

    CAS  Google Scholar 

  • Michniewicz, M., Czerwinska, E., and Lamparska, K., 1985, Inhibitory effect of ethylene on the growth and development of Cylindrocarpon destructans (Zins.) Scholt., Bull. Pol. Acad. Sci. Biol Sci. 33:125-129.

    CAS  Google Scholar 

  • Miller, E. V., Winston, J. R., and Fisher, D. F., 1940. Production of epinasty of emanations from normal and decaying citrus fruits and from Penicillium digitatum. J. Agr. Res. 60:269-278.

    CAS  Google Scholar 

  • Nagahama, K., Ogawa, T., Fujii, T., Tazaki, M., Goto, M., and Fukuda, H., 1991a, L-Arginine is essential for the formation in vitro of ethylene by an extract of Pseudomonas syringae,J. Gen. Microbiol. 137:1641-1646.

    CAS  Google Scholar 

  • Nagahama, K., Ogawa, T., Fujii, T., Tazaki, M., Tanase, S., Morino, Y., and Fukuda, H., 1991b, Purification and properties of an ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2, J. Gen. Microbiol. 137:2281-2286.

    PubMed  CAS  Google Scholar 

  • Nagahama, K., Ogawa, T., Fujii, T., and Fukuda, H., 1992, Classification of ethylene-producing bacteria in terms of biosynthetic pathways to ethylene, J. Ferment. Bioeng. 73:1-5.

    CAS  Google Scholar 

  • Nickerson, W. J., 1948, Ethylene as a metabolic product of the pathogenic fungus, Blastomyces dermatitidis. Arch. Biochem. 17:225-233.

    PubMed  CAS  Google Scholar 

  • Nikitin, D. I., and Nikitina, E. S., 1978, Protsessy samoochishcheniya okruzhayushchei sredy i parazity bakterii (rod Bdellovibrio). (Self-purification of the environment and parasites of Bdellovibrio bacteria). Nauka, Moscow.

    Google Scholar 

  • Ogawa, T., Murakami, H., Yamashita, K., Tazaki, M., Fujii, T., and Fukuda, H., 1992, The stimulatory effect of catalase on the formation in vitro of ethylene by an ethylene-forming enzyme purified from Penicillium digitatum, J. Ferment. Bioeng. 73:58-60.

    CAS  Google Scholar 

  • Pazout, J., and Pazoutova, S., 1989, Relationship between aeration, carbon source, and respiration yield and the ethylene production and differentiation of static cultures of Penicillium cyclopium and P. velutinum. Can. J. Microbiol. 35:619-622.

    CAS  Google Scholar 

  • Pazout, J., Wurst, M., and Vancura, V., 1981, Effect of aeration on ethylene production by soil bacteria and soil samples cultivated in a closed system, Plant Soil 62:431-437.

    CAS  Google Scholar 

  • Pazout, J., Pazoutova, S., and Vancura, V., 1982, Effects of light, phosphate and oxygen on ethylene formation and conidiation in surface cultures of Penicillium cyclopium, Westling Curr. Microbiol. 7:133-136.

    CAS  Google Scholar 

  • Peacock, B. C, and Muirhead, I. F., 1974, Ethylene production by Colletotrichum musae, Queensl J. Agric. Anim. Sci. 31:249-252.

    CAS  Google Scholar 

  • Pegg, G. F., and Cronshaw, D. K., 1976, The relationship of in vitro to in vivo ethylene production in Pseudomonas solanacearum infection of tomato, Physiol Plant Pathol. 9:145-154.

    CAS  Google Scholar 

  • Phan, C. T., 1962, Contribution a L’etude de la production de L’ethylene par le Penicillium digitatum, Sacc. Rev. Gen. Bot. 69:505-543.

    Google Scholar 

  • Primrose, S. B., 1976a, Formation of ethylene by Escherichia coli, J. Gen. Microbiol. 95:159-165.

    PubMed  CAS  Google Scholar 

  • Primrose, S. B., 1976b, Ethylene-forming bacteria from soil and water, J. Gen. Microbiol. 97:343-346.

    PubMed  CAS  Google Scholar 

  • Primrose, S. B., 1977, Evaluation of the role of methional, 2-keto-4-methyl-thiobutyric acid and peroxidase in ethylene formation by Escherichia coli, J. Gen. Microbiol. 98:519-528.

    PubMed  CAS  Google Scholar 

  • Primrose, S. B., 1979, A review, ethylene and agriculture: The role of microbes, J. Appl. Bacteriol. 46:1-25.

    CAS  Google Scholar 

  • Primrose, S. B., and Dilworth, M. J., 1976, Ethylene production by bacteria, J. Gen. Microbiol. 93:177-181.

    PubMed  CAS  Google Scholar 

  • Reyes, A. A., and Smith, R. B., 1986, Controlled atmosphere effects on the pathogenicity of fungi on celery and on the growth of Botrytis cinerea, HortSci. 21:1167-1169.

    CAS  Google Scholar 

  • Russo, V. E. A., Halloran, B., and Gallori, E., 1977, Ethylene is involved in the autochemotropism ofphycomyces., Planta 134:61-67.

    CAS  Google Scholar 

  • Sato, M, Watanabe, K., Yazawa, M., Takikawa, Y., and Nishiyama, K., 1997, Detection of new ethylene- producing bacteria, Pseudomonas syringae pvs. cannabina and sesami, by PCR amplification of genes for the ethylene-forming enzyme, Phytopathol. 87:1192-1196.

    CAS  Google Scholar 

  • Sato, M, Urushizaki, S., Nishiyama, K., Sakai, F., and Ota, Y., 1987, Efficient production of ethylene by Pseudomonas syringae pv. glycinea which causes halo blight in soybeans, Agric. Biol. Chem. 51:1177-1178.

    CAS  Google Scholar 

  • Shipston, N., and Bunch, A. W., 1989, The physiology of L-methionine catabolism to the secondary metabolite ethylene by Escherichia coli, J. Gen. Microbiol. 135:1489-1497.

    PubMed  CAS  Google Scholar 

  • Smith, A. M. , 1973, Ethylene as a cause of soil fungistasis, Nature 246:311-313.

    PubMed  CAS  Google Scholar 

  • Smith, A. M, 1976, Ethylene in soil biology, Annu. Rev. Phytopathol. 14:53-73.

    CAS  Google Scholar 

  • Smith, A. M., and Cook, R. J., 1974, Implications of ethylene production by bacteria for biological balance of soil, Nature 252:703-705.

    CAS  Google Scholar 

  • Spalding, D. H., and Lieberman, M., 1965, Factors affecting the production of ethylene by Penicillium digitatum, Plant Physiol. 40:645-648.

    PubMed  CAS  Google Scholar 

  • Strzelczyk, E., Kampert, M, and Li, C. Y., 1994a, Cytokinin-like substances and ethylene production by Aizospirillum in media with different carbon sources, Microbiol. Res. 149:55-60.

    CAS  Google Scholar 

  • Strzelczyk, E.,Kampert, M., and Pachlewski, R., 1994b, The influence of pH and temperature on C2H4 production by mycorrhizal fungi of pine. Mycorrhiza 4:193-196.

    CAS  Google Scholar 

  • Strzelczyk, E., Pokojska, A., Kampert, M., Michalski, L., and Kowalski, S., 1989, Production of plant growth regulators by non-mycorrhizal fungi associated with the roots of forest trees, in: Interrelationships between Microorganisms and Plants in Soil, Proc. Intl. Symp. Liblice. Czech. V. Vancura and F. Kunc (eds.). Acad. Publ., Czech Acad. Sci., Prague, pp. 213-222.

    Google Scholar 

  • Swanson, B. T., Wilkins, H. F., and Kennedy, B. W., 1979, Factors affecting ethylene production by some plant pathogenic bacteria, Plant Soil 51:19-26.

    CAS  Google Scholar 

  • Swart, A., and Kamerbeek, G. A., 1976, Different ethylene production in vitro by several species and formae speciales of Fusarium, Neth. J. Plant Pathol. 82:81-84.

    CAS  Google Scholar 

  • Swart, A., and Kamerbeek, G. A., 1977, Ethylene production and mycelium growth of the tulip strain of Fusarium oxysporum as influenced by shaking of and oxygen supply to the culture medium, Physiol. Plant. 39:38-44.

    CAS  Google Scholar 

  • Tanaka, H., Enoki, A., and Fuse, G., 1986, Correlation between ethylene production from α- or γ methylthiobutyrie acid and degradation of lignin dimeric model compounds by wood inhibiting fungi, Mokuzai Gakkaishi 32:125.

    CAS  Google Scholar 

  • Thomas, K. C, and Spencer, M., 1977, L-Methionine as an ethylene precursor in Saccharomyces cerevisiae, Can. J. Microbiol. 23:1669-1674.

    PubMed  CAS  Google Scholar 

  • Thomas, K. C, and Spencer, M., 1978, Evolution of ethylene by Saccharomyces cerevisiae as influenced by the carbon source for growth and the presence of air, Can. J. Microbiol. 24:637-642.

    PubMed  CAS  Google Scholar 

  • Tzeng, D. D., and DeVay, J. E., 1984, Ethylene production and toxigenicity of methionine and its derivatives with riboflavin in cultures of Verticillium, Fusarium, and Colletotrichum species expsed to light, Physiol. Plant. 62:545-552.

    CAS  Google Scholar 

  • Völksch, B., and Weingart, H., 1997, Comparison of ethylene-producing Pseudomonas syringae strains isolated from kudzu (Pueraria lobata) with Pseudomonas syringae pv. phaseolicola and Pseudomonas syringae pv. glycinea, European J. Plant Pathol. 103:795-802.

    Google Scholar 

  • Völksch, B., and Weingart, H., 1998, Toxin production by pathovars of Pseudomonas syringae and their antagonistic activities against epiphytic microorganisms, J. Basic Microbiol. 38:135-145.

    PubMed  Google Scholar 

  • Ward, T., Turner, E. M., and Osborne, D. J., 1978, Evidence for the production of ethylene by the mycelium of Agaricus bisporus and its relationship to sporocarp development, J. Gen. Microbiol. 104:23-30.

    CAS  Google Scholar 

  • Watanabe, T., and Kondo, N., 1976, Ethylene evolution in marine algae and a proteinaceous inhibitor of ethylene biosynthesis from red alga, Plant, Cell Physiol. 17:1159-1166.

    CAS  Google Scholar 

  • Weingart, H., and Volksch, B., 1997, Ethylene production by Pseudomonas syringae pathovars in vitro and in planta, Appl. Environ. Microbiol. 63:156-161.

    PubMed  CAS  Google Scholar 

  • Weingart, H., Völksch, B., and Ullrich, M. S., 1999, Comparison of ethylene production by Pseudomonas syringae and Ralstonia solanacearum, Phytopathol. 89:360-365.

    CAS  Google Scholar 

  • Wilkes, J., Dale, G. T., and Old, K. M., 1989, Production of ethylene by Endothia gyrosa and Cytospora eucalypticola and its possible relationship to kino vein formation in Eucalyptus maculata, Physiol. Mol. Plant Pathol. 34:171-180.

    CAS  Google Scholar 

  • Wood, D. A. and Hammond, J. B. W., 1977, Ethylene production by axenic fruiting cultures of Agaricus bisporus, Appl. Environ. Microbiol. 34:228-229.

    PubMed  CAS  Google Scholar 

  • Young, R. E., Pratt, H. K., and Biale, J. B., 1951, Identification of ethylene as a volatile product of the fungus Penicillium digitatum, Plant Physiol. 26:304-310.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arshad, M., Frankenberger, W.T. (2002). Factors Affecting Microbial Production of Ethylene. In: Ethylene. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0675-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0675-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5189-4

  • Online ISBN: 978-1-4615-0675-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics