Skip to main content

Biochemistry of Microbial Production of Ethylene

  • Chapter
Ethylene

Abstract

The ability of microorganisms to derive C2H4 from a variety of compounds has made the biochemistry of microbial production of C2H4 very complex. The literature indicates that C2H4 -producing microorganisms do not follow the same pathway operative in higher plants (MET → SAM → ACC → C2H4). This subject has been reviewed elsewhere (Fukuda and Ogawa, 1991; Fukuda et al., 1993; Arshad and Frankenberger, 1993, 1998; Frankenberger and Arshad, 1995). However, many microorganisms do synthesize C2H4 from methionine. This chapter is dedicated to the microbial biosynthesis pathways involving substrates, enzymes, inhibitors and intermediary metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Arshad, M., and Frankenberger, W. T., Jr., 1989, Biosynthesis of ethylene by Acremonium falciforme, Soil Biol Biochem. 21:633-638.

    Article  CAS  Google Scholar 

  • Arshad, M, and Frankenberger, W. T., Jr., 1990, Ethylene accumulation in soil in response to organic amendments, Soil Sci. Soc. Am. J. 54:1026-1031.

    Article  CAS  Google Scholar 

  • Arshad, M, and Frankenberger, W. T., Jr., 1993, Microbial production of plant growth regulators, in: Soil Microbial Ecology, B. F. Metting, ed.. Marcel Dekker, Inc., New York, pp. 307-347.

    Google Scholar 

  • Arshad, M., and Frankenberger, W. T., Jr., 1998, Plant growth-regulating substances in the rhizosphere: Microbial production and functions, Adv. Agron. 62:45-151.

    Article  CAS  Google Scholar 

  • Beard, R., and Harrison, M. A., 1992, Effect of inoculation on ethylene production in beans, Plant Physiol. 99(Suppl.):66.

    Google Scholar 

  • Billington, D. C., Golding, B. T., and Primrose, S. B., 1979, Biosynthesis of ethylene from methionine, Biochem. J. 182:827-836.

    PubMed  CAS  Google Scholar 

  • Brown, S. K., and Brown, L. R., 1981, The production of carbon monoxide and ethylene by Rhizoctonia solani, Dev. Indust. Microbiol. 22:725-731.

    CAS  Google Scholar 

  • Brown-Skrobot, S. K., Brown, L. R., and Filer, T. H., Jr., 1985, Mechanism of ethylene and carbon monoxide production by Septoria musiva, Dev. Indust. Microbiol. 26:567-573.

    CAS  Google Scholar 

  • Bunch, A. W., McSwiggan, S., Lloyd, J. B., and Shipston, N. F., 1991, Ethylene synthesis by soil microorganisms: Its agricultural and biotechnological importance, Agro-Industry Hi-Tech. 2:21-24.

    Google Scholar 

  • Burd, G. I., Dixon, D. G., and Glick, B. R., 1998, A plant growth-promoting bacterium that decreases nickel toxicity in seedlings, Appl. Environ. Microbiol. 64:3663-3668.

    PubMed  CAS  Google Scholar 

  • Campbell, B. G. and Thomson, J. A., 1996, 1-Aminocyclopropane-l-carboxylate deaminase genes from Pseudomonas strains, FEMS Microbiol. Lett. 138:207-210.

    Article  PubMed  CAS  Google Scholar 

  • Chalutz, E. and Lieberman, M., 1978, Inhibition of ethylene production in Penicillium digitatum, Plant Physiol. 61:111-114.

    Article  PubMed  CAS  Google Scholar 

  • Chalutz, E., Lieberman, M., and Sisler, H. D., 1977, Methionine-induced ethylene production by Penicillium digitatum, Plant Physiol. 60:402-406.

    Article  PubMed  CAS  Google Scholar 

  • Chandhoke, V., Goodell, B., Jellison, J., and Fekete, F. A., 1992, Oxidation of 2-keto-4-thiomethylbutyric acid (KTBA) by iron-binding compounds produced by the wood-decaying fungus Gloeophyllum trabeum. FEMS Microbiol. Lett. 90:263-266.

    Article  CAS  Google Scholar 

  • Chernys, J., and Kende, H., 1996, Ethylene biosynthesis in Regnellidium diphyllum and Marsilea quadrifolia, Planta 200:113-118.

    Article  CAS  Google Scholar 

  • Chou, T. W. and Yang, S. F., 1973, The biogenesis of ethylene in Penicillium digitatum, Arch. Biochem. Biophys. 157:73-82.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, L. W., and Hodges, C. F., 1986, The effect of methionine on ethylene and 1-aminocyclopropane-l- carboxylic acid production by Bipolaris sorokiniana, Phytopathol. 76:851-856.

    Article  CAS  Google Scholar 

  • Considine, P. J., Flynn, N., and Patching, J. W., 1977, Ethylene production by soil microorganisms, Appl. Environ. Microbiol. 33:977-979.

    PubMed  CAS  Google Scholar 

  • Dasilva, E. J., Henriksson, E., and Henriksson, L. E., 1974, Ethylene production by fungi, Plant Sci. Lett. 2:63-66.

    Article  CAS  Google Scholar 

  • de Bont, J. A. M., 1976, Oxidation of ethylene by soil bacteria, Antonie van Leeuwenhoek 42:59-71.

    Article  PubMed  Google Scholar 

  • de Bont, J. A. M. and Harder, W., 1978, Metabolism of ethylene by Mycobacterium E20, FEMS Microbiol.Lett. 3:89-93.

    Article  Google Scholar 

  • de Bont, J. A. M., Attwood, M. M., Primrose, S. B., and Harder, W., 1979, Epoxidation of short chain alkenes in Mycobacterium E20: The involvement of a specific monooxygenase, FEMS Microbiol. Lett. 6:183- 188.

    Article  Google Scholar 

  • de Bont, J. A. M., van Ginkel, C. G., Tramper, J., and Luyben, K. C. A. M., 1983, Ethylene oxide production by immobilized Mycobacterium Py 1 in a gas/solid bioreactor, Enzyme Microbiol. Technol. 5:55-60.

    Article  Google Scholar 

  • Diguiseppi, J., and Fridovich, I., 1980, Ethylene from 2-keto-4-thiomethylbutyric acid: The Haber-Weiss reaction, Arch. Biochem. Biophys. 205:323-329.

    Article  PubMed  CAS  Google Scholar 

  • Drahos, D., Barry, G., Hemming, B., Bradt, F., Skipper, H., Kline, E., Kluepful, D., Hughes, T., and Gooden, D., 1988, Pre-release testing procedures: U.S. field test of a lacZY-engineered soil bacterium, in: The Release of Genetically-Engineered Microorganisms, M. Sussman, C. Collins, F. Skinner, and D. Stewait-Tull, eds.. Academic Press, New York. pp. 181-191.

    Google Scholar 

  • Fergus, C. L., 1954, The production of ethylene by Penicillium digitatum, Mycologia 46:543-555.

    Google Scholar 

  • Frankenberger, W. T., Jr., and Arshad, M, 1995, Phytohormones in Soils: Microbial Production and Functions, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Frankenberger, W. T., Jr., and Phelan, P. J., 1985a, Ethylene biosynthesis in soil. I. Method of assay in conversion of 1-aminocyclopropane-l-carboxylic acid to ethylene, Soil Sci. Soc. Am. J. 49:1416-1422.

    Article  CAS  Google Scholar 

  • Frankenberger, W. T., Jr., and Phelan, P. J., 1985b, Ethylene biosynthesis in soil. II. Kinetics and thermodynamics in the conversion of 1-aminocyclopropane-l-carboxylic acid to ethylene, Soil Sci. Soc. Am. J. 49:1422-1426.

    Article  CAS  Google Scholar 

  • Friedman, D. J., Imperiale, M. J., and Adhya, S. L., 1987, RNA 3’ end formation in the control of geneexpression, Annu. Rev. Genetics 21:453-488.

    Article  CAS  Google Scholar 

  • Fukuda, H., and Ogawa, T., 1991, Microbial ethylene production, in: The Plant Hormone Ethylene, A. K. Mattoo and J. C. Suttle, eds., CRC Press, Boca Raton, FL, pp. 279-292.

    Google Scholar 

  • Fukuda, H., Fujii, T., and Ogawa, T., 1986, Preparation of a cell-free ethylene-forming system from Penicillium digitatum, Agric. Biol. Chem. 50:977-981.

    Article  CAS  Google Scholar 

  • Fukuda, H., Fujii, T., and Ogawa, T., 1988, Production of ethylene by a growth-suppressed mutant of Penicillium digitatum, Biotechnol. Bioengineer. 31:620-623.

    Article  CAS  Google Scholar 

  • Fukuda, H., Takahashi, M., Fujii, T., and Ogawa, T., 1989a, Ethylene production from L-methionine by Cryptococcus albidus, J. Ferment. Bioeng. 67:173-175.

    Article  CAS  Google Scholar 

  • Fukuda, H., Kitajima, H., Fujii, T., Tazaki, M., and Ogawa, T., 1989b, Purification and some properties of a novel ethylene-forming enzyme produced by Penicillium digitatum, FEMS Microbiol. Lett. 59:1-6.

    Article  CAS  Google Scholar 

  • Fukuda, H., Takahashi, M., Fujii, T., Tazaki, M., and Ogawa, T., 1989c, An NADH:Fe(III) EDTA oxidoreductase from Cryptococcus albidus: An enzyme involved in ethylene production in vivo? FEMS Microbiol. Lett. 60:107-112.

    CAS  Google Scholar 

  • Fukuda, H., Ogawa, T., Tazaki, M., Nagahama, K., Fujii, T., Tanase, S., and Morino, Y., 1992a, Two reactions are simultaneously catalyzed by a single enzyme: The argenine-dependent simultaneous formation of two products, ethylene and succinate, from 2-oxoglutarate by an enzyme from Pseudomonas syringae, Biochem. Biophysic. Res. Communic. 188:483-489.

    Article  CAS  Google Scholar 

  • Fukuda, H., Ogawa, T., Ishihara, K., Fujii, T., Nagahama, K., Omata, T., Inoue, Y., Tanase, S., and Morino, Y., 1992b, Molecular cloning in Escherichia coli, expression and nucleotide sequence of the gene for the enthylene-forming enzyme of Pseudomonas syringae pv. phaseolicola PK2, Biochem. Biophys. Res. Commun. 188:826-832.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, H., Ogawa, T., and Tanase, S., 1993, Ethylene production by microorganisms, Adv. Microbiol. Physiol. 35:275-306.

    Article  CAS  Google Scholar 

  • Gibson, M. S., 1964a, Incorporation of pyruvate-C14 into ethylene by Penicillium digitatum, Sacc. Arch. Biochem. Biophys. 106:312-316.

    Article  CAS  Google Scholar 

  • Gibson, M. S., 1964b, Organic acids as a source of carbon for ethylene production, Nature 202:902-903.

    Article  CAS  Google Scholar 

  • Gibson, M. S., and Young, R. E., 1966, Acetate and other carboxylic acids as precursors of ethylene, Nature 210:529-530.

    Article  PubMed  CAS  Google Scholar 

  • Glick, B. R., Karaturovic, D. M., and Newell, P. C, 1995, A novel procedure for rapid isolation of plant growth promoting pseudomonads, Can. J. Microbiol. 41:533-536.

    Article  CAS  Google Scholar 

  • Glick, B. R., Primrose, D. M., and Li, J., 1998, A model for lowering of plant ehtylene concentrations by plant growth-promoting bacteria, J. Theor. Biol. 190:63-68.

    Article  PubMed  CAS  Google Scholar 

  • Goto, M., and Hyodo, H., 1987, Ethylene production by cell-free extract of the Kudzu strain of Pseudomonas syringae pv. phaseolicola, Plant Cell Physiol. 28:405-414.

    CAS  Google Scholar 

  • Goto, M., Ishida, Y., Takikawa, Y., and Hyodo, H., 1985, Ethylene production by the Kudzu strain of Pseudomonas syringae pv. phaseolicola causing halo blight in Pueraria lobata (Wild) Ohwi, Plant Cell Physiol. 26:141-150.

    CAS  Google Scholar 

  • Grichko, V. P., Filby, B., and Glick, B. R., 2000, Increased ability of transgenic plants expressing the bacterial enzyme ACC-deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn, J. Biotechnol. 81:45-53.

    Article  PubMed  CAS  Google Scholar 

  • Habets-Crützen, A. Q. H., and de Bont, J. A. M., 1985, Inactivation of alkene oxidation by epoxides in alkene- and alkane-grown bacteria, Appl. Microbiol. Biotechnol. 22:428-433.

    Article  Google Scholar 

  • Habets-Criitzen, A. Q. H., Brink, L. E. S., van Ginkel, C. G., de Bont, J. A. M., and Tramper, J., 1984, Production of epoxides from gaseous alkenes by resting-cell suspension and immobilized cells of alkene- utilizing bacteria, Appl. Microbiol. Biotechnol. 20:245-250.

    Google Scholar 

  • Habets-Crützen, A. Q. H., Carlier, S. J. N., de Bont, J. A. M., Wistuba, D., Schurig, V., Hartmans, S., and Tramper, J., 1985, Stereospecific formation of 1,2-epoxypropane, 1,2-epoxybutane, and l-chloro-2,3- epoxypropane by alkene-utilizing bacteria, Enzyme Microb. Technol. 7:17-21.

    Article  Google Scholar 

  • Hahm, D. H., Kwak, M. Y., Bae, M., and Rhee, J. S., 1992, Effect of dissolved oxygen tension on microbial ethylene production in continuous culture, Biosci. Biotechnol Biochem. 56:1146-1147.

    Article  CAS  Google Scholar 

  • Hartmans, S., Weber, F. J., Somhorst, D. P. M., and de Bont, J. A. M., 1991, Alkene monooxygenase from Mycobacterium: a multicomponent enzyme, J. Gen. Microbiol. 137:2555-2560.

    Article  PubMed  CAS  Google Scholar 

  • Heyer, J., 1976, Mikrobielle verwetang von Athylen, Z. Allg. Microbiol. 16:633-637.

    Article  CAS  Google Scholar 

  • Higgins, I. J., Hammond, R. C, Sariaslani, F. S., Best, D., Davies, M. M., Tryhorn, S. E., and Tayol, F., 1979, Biotransformation of hydrocarbons and related compounds by whole organism suspensions of methane-grown Methylosinus trichosporium OB 3b, Biochem. Biophys. Res. Commun. 89:671-677.

    Article  PubMed  CAS  Google Scholar 

  • Hommes, N. G., Russell, S. A., Bottomley, P. J., and Arp, D. J., 1998, Effects of soil on ammonia, ethylene, chloroethane, and 1,1,1-trichloroelkane oxidation by Nitrosomonas europaea, Appl Environ. Microbiol. 64:1372-1378.

    PubMed  CAS  Google Scholar 

  • Honma, M, 1983, Enzymatic determination of l-aminocyclopropane-l-carboxylic acid, Agri. Biol. Biochem. 47:617-618.

    Article  CAS  Google Scholar 

  • Honma, M., 1985, Chemically reactive sulfhydryl groups of 1-aminocyclopropane-l-carboxylate deaminase. Agric. Biol. Chem. 49:567-571.

    Article  CAS  Google Scholar 

  • Honma, M. 1993. Stereospecific reaction of 1-aminocyclopropane-l-carboxylate deaminase, in: Cellular and Molecular Aspects of the Plant Hormone Ethylene, J. C. Pech, A. Latche, and C. Balague, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 111-116.

    Google Scholar 

  • Honma, M, and Shimomura, T., 1978, Metabolism of 1-aminocyclopropane-l-carboxylic acid, Agric. Biol. Chem. 42:1825-1831.

    Article  CAS  Google Scholar 

  • Hottiger, T., and Boiler, T., 1991, Ethylene biosynthesis in Fusarium oxysporum f. sp. tulipae proceeds from glutamate/2-oxoglutarate and requires oxygen and ferrous ions in vivo, Arch. Microbiol. 157:18-22.

    Article  CAS  Google Scholar 

  • Hou, C. T., Patel, R., Laskin, A. I., Barnabe, N., 1979, Microbial oxidation of gaseous hydrocarbons: Epoxidation of C2 to C4 n-alkenes by methylotrophic bacteria, Appl. Environ. Microbiol. 38:127-134.

    PubMed  CAS  Google Scholar 

  • Hyman, M. R., and Wood, P. M., 1984, Ethylene oxidation by Nitrosomonas europaea, Arch. Microbiol. 137:155-158.

    Article  CAS  Google Scholar 

  • Hyman, M. R., Murton, I. B., and Arp, D. J., 1988, Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes and alkynes, Appl. Environ. Microbiol. 54:3187-3190.

    PubMed  CAS  Google Scholar 

  • Ince, J. E., and Knowles, C. J., 1985, Ethylene formation by cultures of Escherichia coli, Arch. Microbiol. 141:209-213.

    Article  PubMed  CAS  Google Scholar 

  • Ince, J. E., and Knowles, C. J., 1986, Ethylene formation by cell-free extracts of Escherichia coli, Arch. Microbiol. 146:151-158.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, C. B., Pasternak, J. J., and Glick, B. R., 1994, Partial purification and characterization of 1- aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonasputida GR12-2, Can. J. Microbiol. 40:1019-1025.

    Article  CAS  Google Scholar 

  • Jacobsen, D. W., and Wang, C. H., 1965, The conversion of acrylic acid to ethylene in Penicillium digitatum, Plant Physiol. 40:xix.

    Google Scholar 

  • Jacobsen, D. W., and Wang, C. H., 1968, The biogenesis of ethylene in Penicillium digitatum, Plant Physiol. 43:1959-1966.

    Article  PubMed  CAS  Google Scholar 

  • Jia, Y.-J., Ito, H., Matsui, H., and Honma, M., 2000, 1-Aminocyclopropane-l-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated in Penicillium citrinum intracellular spaces, Biosci. Biotechnol. Biochem. 64:299-305.

    Article  PubMed  CAS  Google Scholar 

  • Jia, Y.-J., Kakuta, Y., Sugawara, M., Igarashi, T., Oki, N„ Kisaki, M., Shoji, T., Kanetuna, Y., Horita, T., Matsui, H., and Honma, M., 1999, Synthesis and degradation of 1-aminocyclopropane-l-carboxylic acid by Penicillium citrinum, Biosci. Biotechnol. Biochem. 63:542-549.

    Article  PubMed  CAS  Google Scholar 

  • Ketring, D. L., Young, R. E., and Biale, J. B., 1968, Effects of monofluoroaeetate on Penincillium digitatum metabolism and on ethylene biosynthesis, Plant Cell Physiol. 9:617-631.

    CAS  Google Scholar 

  • Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F., and Kishmore, G. M., 1991, Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants, Plant Cell 3:1187-1193.

    PubMed  CAS  Google Scholar 

  • Klee, H. J., and Kishmore, G. M., 1992, International Patent Number WO92/12249 (to Monsanto Company), July 23, 1992.

    Google Scholar 

  • Kutsuki, H., and Gold, M. H., 1982, Generation of hydroxyl radical and its involvement in lignin degradation by Phanerochaete chrysosporium, Biochem. Biophys. Res. Commun. 109:320-327.

    Article  PubMed  CAS  Google Scholar 

  • Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105-132.

    Article  PubMed  CAS  Google Scholar 

  • Lehninger, A. L., 1975, Biochemistry: The Molecular Basis of Cell Structure and Function, Worth Publishers, Inc., New York, pp. 1104.

    Google Scholar 

  • Lifshitz, R., Kloepper, J. W., Scher, F. M., Tipping, E. M., and Laliberte, M., 1986, Nitrogen-fixing pseudomonads isolated from roots of plants grown in the Canadian high arctic, Appl. Environ. Microbiol. 51:251-253.

    PubMed  CAS  Google Scholar 

  • Lund, B. M, and Mapson, L. W., 1970, Stimulation of Erwinia carotovora of the synthesis of ethylene in cauliflower tissue, Biochem.J. 119:251-263.

    PubMed  CAS  Google Scholar 

  • Lynch, J. M., 1972, Identification of substrates and isolation of microorganisms responsible for ethylene production in soil, Nature 240:45-46.

    Article  CAS  Google Scholar 

  • Lynch, J. M., 1974, Mode of ethylene formation by Mucor hiemalis, J. Gen. Microbiol. 83:407-411.

    Article  Google Scholar 

  • Lynch, J. M., and Harper, S. H. T., 1974, Formation of ethylene by a soil fungus, J. Gen. Microbiol 80:187- 195.

    Article  Google Scholar 

  • Mahmoudian, M., and Michael, A., 1992. Production of chiral epoxides by an ethene-utilizing Micrococcus sp., J. Indust. Microbiol. 11:29-35.

    Article  CAS  Google Scholar 

  • Mansouri, S., and Bunch, A. W., 1989, Bacterial ethylene synthesis from 2-oxo-4-thiobutyric acid and from methionine, J. Gen. Microbiol. 135:2819-2827.

    PubMed  CAS  Google Scholar 

  • Matsuda, J., Okabe, S., Hashimoto, T., and Yamada, Y., 1991, Molecular cloning of hyoscyamine G beta- hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger, J. Biol. Chem. 266:9460-9464.

    PubMed  CAS  Google Scholar 

  • McGarvey, D. J., Sirevag, R., and Christoffersen, R. E., 1992, Ripening-related gene from avocado fruit, Plant Physiol. 98:554-559.

    Article  PubMed  CAS  Google Scholar 

  • Minami, R., Uchiyama, K., Murakami, T., Kawai, J., Mikami, K., Yamada, T., Yokoi, D., Ito, H., Matsui, H., and Honma, M., 1998, Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane- 1-carboxylate deaminase from Hansenula satumus, J. Biochem. 123:1112-1118.

    Article  PubMed  CAS  Google Scholar 

  • Nagahama, K., Ogawa, T., Fujii, T, Tazaki, M., Goto, M., and Fukuda, H., 1991a, L-Arginine is essential for the formation in vitro of ethylene by an extract of Pseudomonas syringae, J. Gen. Microbiol. 137:1641- 1646.

    Article  CAS  Google Scholar 

  • Nagahama, K,, Ogawa, T., Fujii, T., Tazaki, M., Tanase, S., Morino, Y., and Fukuda, H., 1991b, Purification and properties of an ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2, J. Gen. Microbiol. 137:2281-2286.

    Article  PubMed  CAS  Google Scholar 

  • Nagahama, K., Ogawa, T., Fujii, T., and Fukuda, H., 1992, Classification of ethylene-producing bacteria in terms of biosynthetic pathways to ethylene, J. Ferment. Bioeng. 73:1-5.

    Article  CAS  Google Scholar 

  • Nagahama, K., Yoshino, K., Matsuoka, M., Sato, M., Tanase, S., Ogawa, T., and Fukuda, H., 1994, Ethylene production by strains of the plant pathogenic bacterium Pseudomonas syringae depends upon the presence of indigenous plasmids carrying homologous genes for the ethylene-forming enzyme, Microbiol. 140:2309-2313.

    Article  CAS  Google Scholar 

  • Nikitin, D. I., and Arakelyan, R. N., 1979, Utilization of ethylene by soil bacteria, Biol. Bull. Acad. Sci. USSR 6:671-673.

    Google Scholar 

  • Ogawa, T., Takahashi, M., Fujii, T., Tazaki, M., and Fukuda, H., 1990, The role of NADH:Fe(III) EDTA oxidoreductase in ethylene formation from 2-keto-4-methylthiobutyrate, J. Ferment. Bioeng. 69:287- 291.

    Article  CAS  Google Scholar 

  • Ogawa, T., Murakami, H., Yamashita, K., Tazaki, M., Fujii, T., and Fukuda, H., 1992, The stimulatory effect of catalase on the formation in vitro of ethylene by an ethylene-forming enzyme purified from Penicillium digitatum, J. Ferment. Bioeng. 73:58-60.

    Article  CAS  Google Scholar 

  • Osborne, D. J., Walters, J., Milborrow, B. V., Norville, A., and Stange, L. M., 1996, Evidence for a non-ACCethylene biosynthesis pathway in lower plants, Phytochem. 42:51-60.

    Article  CAS  Google Scholar 

  • Owens, L. D., Lieberman, M., and Kunishi, A., 1971, Inhibition of ethylene production by rhizobitoxine, Plant Physiol. 48:1-4.

    Article  PubMed  CAS  Google Scholar 

  • Patel, R. N., Hou, C. T., Laskin, A. I., Felix, A., and Derelanko, P., 1983, Epoxidation of n-alkenes by organisms grown on gaseous alkanes, J. Appl. Biochem. 5:121-131.

    CAS  Google Scholar 

  • Pazout, J., Wurst, M., and Vancura, V., 1981, Effect of aeration on ethylene production by soil bacteria and soil samples cultivated in a closed system, Plant Soil 62:431-437.

    Article  CAS  Google Scholar 

  • Penrose, D. M., and Glick, B. R., 1997, Enzymes that regulate ethylene levels -- 1-aminocyclopropane-l- carboxylic acid (ACC) deaminase, ACC synthase and ACC oxidase, Indian J. Exptl. Biol. 35:1-17.

    CAS  Google Scholar 

  • Primrose, S. B., 1976a, Formation of ethylene by Escherichia coli, J. Gen. Microbiol. 95:159-165.

    Article  PubMed  CAS  Google Scholar 

  • Primrose, S. B., 1976b, Ethylene-forming bacteria from soil and water, J. Gen. Microbiol. 97:343-346.

    Article  PubMed  CAS  Google Scholar 

  • Primrose, S. B., 1977, Evaluation of the role of methional, 2-keto-4-methylthiobutyric acid and peroxidase in ethylene formation by Escherichia coli, J. Gen. Microbiol. 98:519-528.

    Article  PubMed  CAS  Google Scholar 

  • Primrose, S. B., 1979, A review, ethylene and agriculture: the role of microbes, J. Appl. Bacteriol. 46:1-25.

    Article  CAS  Google Scholar 

  • Primrose, S. B., and Dilworth, M. J., 1976, Ethylene production by bacteria, J. Gen. Microbiol. 93:177-181.

    Article  PubMed  CAS  Google Scholar 

  • Sato, M, Watanabe, K., Yazawa, M., Takikawa, Y., and Nishiyama, K., 1997, Detection of new ethylene- producing bacteria, Pseudomonas syringae pvs. cannabina and sesami, by PCR amplification of genes for the ethylene-forming enzyme, Phytopathol. 87:1192-1196.

    Article  CAS  Google Scholar 

  • Shah, S., Li, J., Moffatt, B. A., and Glick, B. R., 1997, ACC deaminase genes from plant growth-promoting rhizobacteria, in: Plant Growth-Promoting Rhizobacteria: Present Status and Future Prospects. A. Ogoshi, K. Kobayashi, Y. Honma, F. Kadama, N. Kondo, and S. Akino, eds., OECD, Paris, France, pp. 320-324.

    Google Scholar 

  • Shah, S., Li, J., Moffatt, B. A., and Glick, B. R., 1998, Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria, Can. J. Microbiol. 44:833-843.

    Article  PubMed  CAS  Google Scholar 

  • Sheehy, R. E., Honma, M., Yamada, M., Sasaki, T., Martineau, B., and Hiatt, W. R., 1991, Isolation, sequence and expression in Escherichia coli of the Pseudomonas sp. strain ACP gene encoding 1- aminocyclopropane-1-carboxylate deaminase, J. Bacteriol 173:5260-5265.

    PubMed  CAS  Google Scholar 

  • Shipston, N., and Bunch, A. W., 1989, The physiology of L-methioinine catabolism to the secondary metabolite ethylene by Escherichia coli, J. Gen. Microbiol. 135:1489-1497.

    PubMed  CAS  Google Scholar 

  • Sprayberry, B. A., Hall, W. C, and Miller, C. S., 1965. Biogenesis of ethylene in Pennicillium digitatum. Nature 208:1322-1323.

    Article  PubMed  CAS  Google Scholar 

  • Swart, A. and G. A. Kamerbeek. 1977. Ethylene production and mycelium growth of the tulip strain of Fusarium oxysporum as influenced by shaking of and oxygen supply to the culture medium. Physiol. Plant. 39:38-44.

    Article  CAS  Google Scholar 

  • Tauber, A. I., and Babior, B. M., 1977, Evidence for hydroxyl radical production by human neutrophils, J. Clin. Invest. 60:374-379.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, K. C, and Spencer, M., 1977, L-Methionine as an ethylene precursor in Saccharomyces cerevisiae, Can. J. Microbiol. 23:1669-1674.

    Article  PubMed  CAS  Google Scholar 

  • van Ginkel, C. G.,Welten, H. G. J., and de Bont, J. A. M., 1986, Epoxidation of alkenes by alkene-grown Xanthobacter spp., Appl. Microbiol. Biotech. 24:334-337.

    Article  Google Scholar 

  • van Ginkel, C. G., Welten, H. G. J., and de Bont, J. A. M., 1987, Oxidation of gaseous and volatile hydrocarbons by selected alkene-utilizing bacteria, Appl. Environ. Microbiol. 53:2903-2907.

    PubMed  Google Scholar 

  • Walsh, C Pascal, R. A., Jr., Johnston, M., Raines, R., Dikshit, D., Krantz, A., and Honma, M., 1981, Mechanistic studies on the pyridoxal phosphate enzyme 1-aminocyclopropane-l-carboxylate deaminase from Pseudomonas sp.. Biochemistry 20:7509-7519.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C., Knill, E., Czlick, B. R., and Defago, G., 2000, Effect of transferring 1-aminocyclopropane-l- carboxylic acid (ACC) deaminase genes with Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities, Can. J. Microbiol. 46:898-907.

    PubMed  CAS  Google Scholar 

  • Wang, C. H., Persyn, A., and Krackov, J., 1962, Role of the Krebs cycle in ethylene biosynthesis, Nature 195:1306-1308.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, K., Nagahama, K., and Sato, M., 1998, A conjugative plasmid carrying the efe gene for the ethylene-forming enzyme isolated from Pseudomonas syringae pv. glycinea, Phytopathol. 88:1205-1209.

    Article  CAS  Google Scholar 

  • Weijers, C. A. G., van Ginkel, C. G., and de Bont, J. A. M., 1988, Enantiomeric composition of lower epoxyalkanes produced by methane-, alkane-, and alkene-utilizing bacteria, Enzyme Microb. Technol. 10:214-218.

    Article  CAS  Google Scholar 

  • Wild, J., Walczak, W., Krajewska-Grynkiewicz, K., and Klopotowski, T., 1974, D-Amino acid dehydrogenase: The enzyme of the first step of D-histidine and D-methionine racemization in Salmonella tryphimurium, Mol Gen. Genet. 128:131-146.

    Article  PubMed  CAS  Google Scholar 

  • Wilkes, J., Dale, G. T., and Old, K. M., 1989, Production of ethylene by Endothia gyrosa and Cytospora eucalypticola and its possible relationship to kino vein formation in Eucalyptus maculata, Physiol. Molec. Plant Pathol. 34:171-180.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arshad, M., Frankenberger, W.T. (2002). Biochemistry of Microbial Production of Ethylene. In: Ethylene. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0675-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0675-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5189-4

  • Online ISBN: 978-1-4615-0675-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics