Skip to main content

Do Newts Avoid Conspecific Alarm Substances: The Predation Hypothesis Revisited

  • Chapter
  • 343 Accesses

Abstract

Predator detection and avoidance are important for prey survival. Upon noticing a predator, most prey will decrease activity, move into refugia, or flee (Lima, 1998). Many prey rely on visual cues to reveal threats, but dense vegetation and turbidity often make vision unreliable in aquatic environments (Kats and Dill, 1998). Therefore, aquatic prey may benefit more from using chemical cues than visual cues to detect predators (Dodson et al., 1994). Numerous studies have demonstrated that aquatic animals use their chemical senses to identify predators and release antipredatory behaviors (Kats and Dill, 1998). In fact, Stauffer and Semlitsch (1993) demonstrated that predators’ chemical cues amplified antipredatory behaviors in Rana lessonae and Rana esculenta tadpoles, but visual cues did not.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beebee, T. J., 1979, Habitats of the British amphibians (2): suburban parks and gardens, Biol. Conserv. 15:241–257.

    Article  Google Scholar 

  • Beebee, T. J., 1997, Changes in dewpond numbers and amphibian diversity over 20 years on Chalk Downland in Sussex, England, Biol. Conserv. 81:215–219.

    Article  Google Scholar 

  • Belden, L. K., Wildy, E. L., Hatch, A. C, and Blaustein, A. R., 2000, Juvenile western toads, Bufo boreas, avoid chemical cues of snakes fed juveniles, but not larval, conspecifics, Anim. Behav. 59:871–875.

    Article  PubMed  Google Scholar 

  • Bellis, E. D., 1968, Summer movement of red-spotted newts in a small pond, J. Herpetol. 1:86–91.

    Article  Google Scholar 

  • Bishop, S. C, 1941, The salamanders of New York, Bull. N.Y. State Mus. 324:365.

    Google Scholar 

  • Brandon, R. A., Labanick, G. M., and Huheey, J. E., 1979, I earned avoidance of brown efts, Notophthalmus viridescens louisianensis (Amphibia, Urodela, Salamandridae), by chickens, J. Herpetol. 13:171–176.

    Article  Google Scholar 

  • Brodie, E. D., Jr., 1968, Investigations on the skin toxin of the red-spotted newt, Notophthalmus viridescens viridescens, Am. Midl. Nat. 80:276–280.

    Article  Google Scholar 

  • Brodie, E. D., III, and Brodie, E. D., Jr., 1990, Tetrodotoxin resistance in garter snakes: an evolutionary response of predators to dangerous prey, Evolution 44:651–659.

    Article  Google Scholar 

  • Brodie, E. D., III, and Brodie, E. D., Jr., 1991, Evolutionary response of predators to dangerous prey: reduction of toxicity of newts and resistance of garter snakes in island populations, Evolution 45:221–224.

    Article  Google Scholar 

  • Brodie, E. D., Jr., and Howard, R. R., 1973, Experimental study of Batesian mimicry in the salamander Plethodon jordani and Desmognathus ochrophaeus, Am. Midl. Nat. 90:38–46.

    Article  Google Scholar 

  • Bush, F. M., 1959, Foods of some Kentucky herpetiles, Herpetologica 15:73–77.

    Google Scholar 

  • Chivers, D. P., Kiesecker, J. M., Anderson, M. T., Wildy, E. L., and Blaustein, A. R., 1996, Avoidance response of a terrestrial salamander (Ambystoma macrodactylum) to chemical alarm cues, J. Chem. Ecol. 22:1709–1716.

    Article  CAS  Google Scholar 

  • Dodson, S. I., Crowl, T. A., Peckarsky, D. L., Kats, L. B., Covich, A. P., and Culp, J. M., 1994, Nonvisual communication in freshwater benthos: an overview, J.N. Am. Benthol. Soc. 13:268–282.

    Article  Google Scholar 

  • Frost, S. W., 1935, The food of Rana catesbeiana, Copeia 1:15–18.

    Article  Google Scholar 

  • Gamradt, S. C., and Kats, L. B., 1996, Effect of introduced crayfish and mosquitofish on California newts, Conserv. Biol. 10:1155–1162.

    Article  Google Scholar 

  • Gibbons, J. W., 1967, Variation in growth rates in three populations of the painted turtle, Chrysemys picta.Herpetologica 23:296–303.

    Google Scholar 

  • Hamilton, W. J., Jr., 1951, The food and feeding behavior of the garter snake in New York State,Am. Midl. Nat. 46:385–390.

    Article  Google Scholar 

  • Hensel, J. L., Jr., and Brodie, E. D., Jr., 1976, Experimental study of aposematic coloration in the salamander Plethodonjordani, Copeia 1976:59–65.

    Article  Google Scholar 

  • Hews, D. K., 1988, Alarm response in larval western toads, Bufo boreas: release of larval chemicals by a natural predator and its effect on predator capture efficiency. Anim. Behav. 36:125–133.

    Article  Google Scholar 

  • Hews, D. K., and Blaustein, A. R., 1985, An investigation of the alarm response in Bufo boreas and Rana cascadae tadpoles, Behav. Neural Biol. 43:47–57.

    Article  PubMed  CAS  Google Scholar 

  • Howard, R. R., and Brodie, E. D., 1973, A Batesian mimetic complex in salamanders: responses of avian predators, Herpetologica 29:33–41.

    Google Scholar 

  • Howe, N. R., and Sheikh, Y. M., 1975, Anthopleurine, a sea anemone alarm pheromone, Science 189:386–388.

    Article  PubMed  CAS  Google Scholar 

  • Hurlbert, S. H., 1970, Predator responses to the vermillion-spotted newt (Notophthalmus viridescens), J. Herpetol. 4:47–55.

    Article  Google Scholar 

  • Fomanowicz, D. R., Jr., and Brodie, E. D., Jr., 1982, Relative palatabilities of members of a larval amphibian community, Copeia 1982:91–97.

    Article  Google Scholar 

  • Kats, L. B., and Dill, L. M., 1998, The scent of death: chemosensory assessment of predation risk by prey animals, Ecoscience 5:361–394.

    Google Scholar 

  • Kesler, D. H., and Munns, W. R., Jr., 1991, Diel feeding by adult red-spotted newts in the presence and absence of sunfish, J. Freshwater Ecol. 6:267–273.

    Article  Google Scholar 

  • Korschgen, L. J., and Baskett, T. S., 1963, Food of impoundment- and stream-dwelling bullfrogs in Missouri, Herpetologica 19:89–99.

    Google Scholar 

  • Korschgen, L. J., and Moyle, D. L., 1955, Food habits of the bullfrog in central Missouri farm ponds, Am. Midl Nat. 54:333–341.

    Article  Google Scholar 

  • Krebs, J. R., and Davies, N. B., 1993, An Introduction to Behavioral Ecology, 3rd edn., Blackwell Scientific Publications, London.

    Google Scholar 

  • Lagler, K. F., 1943, Food habits and economic relations of the turtles of Michigan with special reference to fish management, Am. Midl. Nat. 29:257–312.

    Article  Google Scholar 

  • Lamoureux, V. S., 2000, Ecology and seasonal behavior of the green frog, Rana clamitans, Ph.D. Thesis, Binghamton University, Binghamton, NY.

    Google Scholar 

  • Lima, S. L., 1998, Nonlethal effects in the ecology of predator-prey interactions, BioScience 48:25–34.

    Article  Google Scholar 

  • Lindeman, P. V., 1996, Comparative life history of painted turtles (Chrysemys picta) in two habitats in the inland Pacific northwest, Copeia 1996:114–130.

    Article  Google Scholar 

  • Lutterschmidt, W. I., Marvin, G. A., and Hutchinson, V. H., 1994, Alarm response by a plethodontid salamander (Desmognathus ochrophaeus): conspecific and heterospecific “schreckstoff”, J. Chem. Ecol. 20:2751–2759.

    Article  CAS  Google Scholar 

  • Madison, D. M., Maerz, J. C., and McDarby, J. H., 1999, Optimization of predator avoidance by salamanders using chemical cues: diet and diel effects, Ethology 105:1073–1086.

    Article  Google Scholar 

  • Marvin, G. A., and Hutchinson, V. H., 1995, Avoidance response by adult newts (Cynopspyrrhogaster and Notophthalmus viridescens) to chemical alarm cues, Behaviour 132:95–105.

    Article  Google Scholar 

  • Miaud, C., Joly, P., and Castanet, J., 1993, Variation in age structures in a subdivided population of Triturus cristatus, Can. J. Zool. 71:1874–1879.

    Article  Google Scholar 

  • Petranka, J. W., 1989, Response of toad tadpoles to conflicting chemical stimuli: predator avoidance versus “optimal” foraging, Herpetologica 45:283–292.

    Google Scholar 

  • Pfeiffer, W., 1974, Pheromones in fish and amphibia, in: Pheromones: Frontiers of Biology, Vol. 32, (M. C. Birch ed.), North-Holland, Amsterdam.

    Google Scholar 

  • Pope, P. H., 1924, The life history of the common water newt (Notophthalmus viridescens), together with observations on the sense of smell, Ann. Carnegie Mus. 15:305–368.

    Google Scholar 

  • Puttlitz, M. H, Chivers, D. P., Kiesecker, J. M, and Blaustein, A. R., 1999, Threat-sensitive predator avoidance by larval Pacific treefrogs (Amphibia, Hylidae), Ethology 105:449–456.

    Article  Google Scholar 

  • Raney, E. C., and Lachner, E. A., 1942, Summer food of Chrysemys picta marginata, in Chatauqua Lake, New York, Copeia 1942:83–85.

    Article  Google Scholar 

  • Snyder, N. F. R., and Snyder, H. A., 1970, Alarm response of Diamdema antillarum, Science 168:276–278.

    Article  PubMed  CAS  Google Scholar 

  • Stauffer, H., and Semlitsch, R. D., 1993, Effects of visual, chemical, and tactile cues offish on the behavioral responses of tadpoles, Anim. Behav. 46:355–364.

    Article  Google Scholar 

  • Webster, D. A., 1960, Toxicity of the spotted newt, Notophthalmus viridescens, to trout, Copeia 1960:74–75.

    Article  Google Scholar 

  • Woody, D. R., and Mathis, A., 1997, Avoidance of areas labeled with chemical stimuli from damaged conspecifics by adult newts, Notophthalmus viridescens, in a natural habitat, J. Herpetol. 31:316–318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rohr, J.R., Madison, D.M. (2001). Do Newts Avoid Conspecific Alarm Substances: The Predation Hypothesis Revisited. In: Marchlewska-Koj, A., Lepri, J.J., Müller-Schwarze, D. (eds) Chemical Signals in Vertebrates 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0671-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0671-3_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5187-0

  • Online ISBN: 978-1-4615-0671-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics