Serotonergic Neurotoxicity of Methylenedioxyamphetamine and Methylenedioxymetamphetamine

  • Terrence J. Monks
  • Fengju Bai
  • R. Timothy Miller
  • Serrine S. Lau
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 500)


3,4-(±)-Methylenedioxyamphetamine (MDA) and 3,4-(±)-methylenedioxymethamphetamine (MDMA, “Ecstasy”) are ring-substituted amphetamine derivatives that have stimulant and hallucinogenic properties (1,2). MDA and MDMA are popular recreational drugs and their abuse is increasing in both the United States (3) and Europe (4). In recent years their clandestine manufacture and appearance on the street have made them popular drugs of abuse (5,6) for their ability to induce “a state of sensory amplification and enhancement without appreciable sympathomimetic stimulation” (7) and have been reported as useful adjuncts to psychotherapy (8). After misuse, chronic paranoid psychosis has been reported, which is persistent and resistant to treatment with haloperidol (9). In experimental animals, including primates, toxicity is also manifest as a selective serotonergic neurotoxicity. The actions of MDA and MDMA are biphasic, initially causing an acute release of 5-hydroxytryptamine (5-HT) (10) followed by prolonged depletion of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA), inhibition of tryptophan hydroxylase (TPH) (11,12), and structural damage to 5-HT terminal and preterminal axons in various regions of the central nervous system (11,13). The immediate 5-HT release caused by these compounds can be blocked in vitro by 5-HT uptake inhibitors (14). The long term neurotoxicity can also be blocked in vivo by 5-HT uptake inhibitors (15) and by 5-HT receptor antagonists, but is potentiated by L-dopa (16). The predominant adverse consequences of MDMA and MDA abuse in humans include convulsions, hyperthermia, rhabomyolysis, and acute liver and renal failure (17).


Mercapturic Acid Cytochrome P450 Isozyme Cysteine Conjugate MDMA Neurotoxicity Preterminal Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thiessen, P. N. and Cook, D.A. (1973) The properties of 3,4-methylened ioxyamphetamine (MDA). I. A review of the literature. Clin. Toxicol. 6, 45–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Kovar, K.A. (1998) Chemistry and pharmacology of hallucinogens, entactogens and stimulants. Pharmacopsychiatry 31(Suppl 2), 69–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Cuomo, M., Dyment, P. and Gammino, V. (1994) Increasing use of ecstasy (MDMA) and other hallucinogens on a college campus. J. Am. Coll. Health 42, 271.PubMedCrossRefGoogle Scholar
  4. 4.
    Johnson, L.D., O’Malley, P.M., and Bachman, J.G. (1997) National survey results on drug use from the Monitoring the Future study, 1975–1995. Vol. 2. College students and young adults. Rockville, MD. National Institutes on Drug Abuse.Google Scholar
  5. 5.
    Baum, R. M. (1985) New variety of street drugs poses growing problem. Chem. Eng. News 63, 7–16.CrossRefGoogle Scholar
  6. 6.
    Peroutka, S..J. (1987) Incidence of recreational use of 3,4 methylenedioxymethamphetamine (MDMA, “ECSTACY”) on an undergraduate campus. New Eng. J. Med. 317, 1542–1543.PubMedGoogle Scholar
  7. 7.
    Shulgin, A. T. (1981) Hallucinogens. In: Burger’s Medicinal Chemistry. (Wolff, M. E. Ed.) 4th Ed., part III, John Wiley and Sons, New York.Google Scholar
  8. 8.
    Greer, G. and Strassman, R. J. (1985) Information on “ecstacy”. Am. J. Psychiat. 142, 1391.PubMedGoogle Scholar
  9. 9.
    Winstock, A.R. (1991) Chronic paranoid psychosis after misuse of MDMA. British Med. J. 302, 1150–1151.CrossRefGoogle Scholar
  10. 10.
    Fuller, R. W. (1976) Pharmacology of p-chloroamphetamine and analogs. Psychopharmacol. Bull. 12, 55–57. PubMedGoogle Scholar
  11. 11.
    Ricaurte, G. A., Bryan, G., Strauss, L., Seiden, L., and Schuster, C. (1985) Hallucino-genic amphetamine selectively destroys brain serotonin nerve terminals. Science. 229, 986–988.PubMedCrossRefGoogle Scholar
  12. 12.
    Ricaurte, G. A., Martello, A. L., Katz, J. L. and Martello, M. B. (1992) Lasting effects of 3,4-methylenedioxymethamphetamine (MDMA) on central serotonergic neurons in nonhuman primates: Neurochemical observations. J. Pharmacol. Exp. Ther. 261, 616–622.PubMedGoogle Scholar
  13. 13.
    Axt, K.J., Mullen, C.A. and Molliver, M.E. (1992) Cytopathologic features indicitive of 5-hydroxytryptamine axon degeneration are observed in rat brain after administration of D- and L-methylenedioxyamphetamine. In: Neurotoxins and Neurodegenerative Disease Ann. NYAcad. Sci. 648, 245–247.Google Scholar
  14. 14.
    Berger, U.V., Gu, X.F. and Azmitia, E.C. (1992) The substituted amphetamines 3,4-methylenedioxymethamphetamine, methamphetamine, p-chloroamphetamine and fenfluramine induce 5-hydroxytryptamine release via a common mechanism blocked by fluoxetine and cocaine. Eur. J. Pharmacol. 215, 153–160.PubMedCrossRefGoogle Scholar
  15. 15.
    Hashimoto, K., Maeda, H. and Goromaru, T. (1992) Effects of benzylpiperazine derivatives on the neurotoxicity of 3,4-methylenedioxymethamphetamine in rat brain. Brain Research 590, 341–344.PubMedCrossRefGoogle Scholar
  16. 16.
    Schmidt, C.J., Black, C.K. and Taylor, V.L. (1991) L-Dopa potentiation of the serotonergic deficits due to a single administration of 3,4-methylenedioxymethamphetamine, p-chloroamphetamine or methamphetamine to rats. Eur. J. Pharmacol. 203, 41–49.PubMedCrossRefGoogle Scholar
  17. 17.
    Henry, J.A., Jeffreys K.J., and Dawling, S. (1992) Toxicity and deaths from 3,4methylenedioxymethamphetamine. Lancet 340: 384–387.PubMedCrossRefGoogle Scholar
  18. 18.
    Stone, D. M., Johnson, M., Hanson, G. R., and Gibb, J. W. Role of endogenous dopamine in the central serotonergic deficits induced by 3,4methylenedioxymethamphetamine. J. Pharmacol. Exp. Ther. 247 (1988) 79–87.PubMedGoogle Scholar
  19. 19.
    Schmidt, C. J., Black, C. K., Abbate, G. M., and Taylor, V. L. Methylenedioxymethamphetamine-induced hyperthermia and neurotoxicity are independently mediated by 5-HT2 receptors. Brain Res. 529 (1990) 85–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Schmidt, C. J., Taylor, V. L., Abbate, G. M., and Nieduzak, T. R. 5-HT2 antagonists stereoselectively prevent the neurotoxicity of 3,4-methylenedioxymethamphetamine by blocking the acute stimulation of dopamine synthesis: Reversal by L-DOPA. J. Pharmacol. Exp. Ther. 256 (1991) 230–235.PubMedGoogle Scholar
  21. 21.
    Ricuarte, G.A., Delanney, L.E., Irwin, I. and Langston, J. W. (1988) Toxic effects of MDMA on central serotonergic neurons in primate: importance of route and frequency of drug administration. Brain Research 446, 165–168.CrossRefGoogle Scholar
  22. 22.
    Molliver, M.E., O’Hearn, E., Battaglia, G., and DeSouza, E.B. (1986) Direct intracerebral administration of MDA and MDMA does not produce serotonin neurotoxicity. Soc. Neurosci. Abstr. 12, 1234.Google Scholar
  23. 23.
    Schmidt, C.J. and Taylor, V.L. (1988) Direct central effects of acute methylenedioxymethamphetamine on serotonergic neurons. Eur. J. Pharmacol. 156, 121–131.PubMedCrossRefGoogle Scholar
  24. 24.
    Paris, J.M., Cunningham, K.A. (1992) Lack of serotonin neurotoxicity after intraraphe microinjection of (+)-3,4-methylenedioxymethamphetamine (MDMA). Brain. Res. Bull. 28, 115–119.PubMedCrossRefGoogle Scholar
  25. 25.
    Gollamudi, R., Ali, S.F., Lipe, G., Newport, G., Webb, P., Lopez, M., Leakey, J.E., Kolta, M., and Slikker, W. Jr. (1989) Influence of inducers and inhibitors on the metabolism in vitro and neurochemical effects in vivo of MDMA. Neurotoxicology 10, 455–466.PubMedGoogle Scholar
  26. 26.
    McCann, U.A., and Ricaurte, G.A. (1991) Major metabolites of 3,4-methylenedioxyamphetamine (MDA) do not mediate its toxic effects on brain serotonin neurons. Brain Research 545, 279–282.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhao, Z., Castagnoli, N. Jr., Ricaurte, G.A., Steele, T., and Martello, M. (1992) Synthesis and neurotoxicological evaluation of putative metabolites of theserotonergic neurotoxin 2-(methylamine)-1-[3,4-methylenedioxyl)]propane [(methylenedioxy)methamphetamine] Chem. Res. Toxicol. 5, 89–94.PubMedCrossRefGoogle Scholar
  28. 28.
    Johnson, M., Elayan, I., Hanson, G. R., Foltz, R. L., Gibb, J. W., and Lim, H. K. Effects of 3,4-dihydroxymethamphetamine and 2,4,5-trihydroxymethamphetamine, two metabolites of 3,4-methylenedioxymethamphetamine, on central serotonergic and dopaminergic systems. J. Pharmacol. Exp. Ther. 261 (1992) 447–453.PubMedGoogle Scholar
  29. 29.
    Elayan, I., Gibb, J. W., Hanson, G. R., Foltz, R. L., Lim, H. K., and Johnson, M. Long-term alteration in the central in the central monoaminergic systems of the rat by 2,4,5-trihydroxyamphetamine, but not by 2-hydroxy-4,5-methylenedioxymethamphetamine or 2-hydroxy-4,5-methylenedioxyamphetamine. Eur. J. Pharmacol. 221 (1992) 281–288.PubMedCrossRefGoogle Scholar
  30. 30.
    Marquardt, G. M., DiStefano, V., and Ling, L. L. Metabolism of 13–3,4-methylenedioxyamphetamine in the rat. Biochem. Pharmacol. 27 (1978) 1503–1505.PubMedCrossRefGoogle Scholar
  31. 31.
    Midha, K. K., Hubbard, J. W., Bailey, K., and Cooper, J. K. a-Methyldopamine, a key intermediate in the metabolic disposition of 3,4-methylenedioxyamphetamine in vivo in dog and monkey. Drug Metab. Dispos. 6 (1978) 623–630.PubMedGoogle Scholar
  32. 32.
    Lim, H. K. and Foltz, R. L. In vivo and in vitro metabolism of 3,4-(methylenedioxy)methamphetamine in the rat: Identification of metabolites using an ion trap detector. Chem. Res. Toxicol. 1 (1988) 370–378.PubMedCrossRefGoogle Scholar
  33. 33.
    Kumagai, Y., Wickham, K.A., Schmitz, D.A., and Cho, A.K. Metabolism of methylenedioxyphenyl compounds by rabbit liver preparations. Participation of different cytochrome P450 isozymes in the demethyleneation reaction. Biochem. Pharmacol. 42 (1991) 1061–1067.PubMedCrossRefGoogle Scholar
  34. 34.
    Kumagai, Y., Schmitz, D.A. and Cho, A.K. (1992) Cytochrome P450 isozymes responsible for the metabolic activation of methylenedioxymethamphetamine (MDMA) in rat. FASEB J. 6, A2567.Google Scholar
  35. 35.
    Hiramatsu, M., Kumagai, Y., Unger, S. E., and Cho, A. K. Metabolism of methylenedioxymethamphetamine: Formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct. J. Pharmacol. Exp. Ther. 254 (1990) 521–527.PubMedGoogle Scholar
  36. 36.
    Patel, N., Kumagai, Y., Unger, S. E., Fukuto, J. M., and Cho, A. K. Transformation of dopamine and a-methyldopamine by NG108–15 cells: Formation of thiol adducts. Chem. Res. Toxicol. 4(1991) 421–426.PubMedCrossRefGoogle Scholar
  37. 37.
    Monks, T.J., and Lau, S.S. (1997) Biological reactivity of polyphenolic-glutathione conjugates. Chem. Res. Toxicol. 10, 1296–1313.PubMedCrossRefGoogle Scholar
  38. 38.
    Wefers, H. and Sies, H. (1983) Hepatic low-level chemiluminesence during redox cycling of menadione and the menadione-glutathione conjugate: Relation to glutathione and NAD(P)H: quinone reductase (DT diaphorase) activity. Arch. Biochem. Biophys. 224, 568–578.PubMedCrossRefGoogle Scholar
  39. 39.
    Monks, T. J., Highet, R. J. and Lau, S. S. (1988) 2-Bromo-(diglutathion-S-yl)hydroquinone nephrotoxicity: Physiological, biochemical and electrochemical determinants. Molec. Pharmacol. 34, 492–500.Google Scholar
  40. 40.
    Miller, R.T., Lau, S.S.and Monks, T.J. (1996) Effect of 5-(Glutathion-S-yl)-amethyldopamine on dopamine, serotonin and norepinepherine concentrations following intracerebroventricular administration to male Sprague-Dawley rats. Chem.Res.Toxicol. 9, 457–465PubMedCrossRefGoogle Scholar
  41. 41.
    Miller, R.T., Lau, S.S. and Monks, T.J. (1997) 2,5-bis-(Glutathion-S-yl)-a-methyldopamine, a putative metabolite of (±)-3,4-methylenedioxyamphetamine, decreases brain serotonin concentrations. Eur. J. Pharmacol. 323, 173–180.PubMedCrossRefGoogle Scholar
  42. 42.
    Monks, T.J., Ghersi-Egea, J-F., Philbert, M.A., Cooper, A.J.L., and Lock, E.A. The role of glutathione in neuroprotection and neurotoxicity. Toxicol. Sci. 51, 161–177,1999.PubMedCrossRefGoogle Scholar
  43. 43.
    Brodkin, J., Malyala, A. and Nash, J. F. (1993) Effect of acute monoamine depletion on 3,4-methylenedioxymethamphetamine-induced neurotoxicity. Pharmacol. Biochem. Behay. 45(3), 647–653.CrossRefGoogle Scholar
  44. 44.
    Miller, R. T., Lau, S. S., and Monks, T. J. Metabolism of 5-(glutathion-S-yl)-amethyldopamine following intracerebroventricular administration to male SpragueDawley rats. Chem. Res. Toxicol. 8(1995) 634–641.PubMedCrossRefGoogle Scholar
  45. 45.
    Monks, T.J., Highet, R.J. and Lau, S.S. Oxidative cyclization, 1,4-benzothiazine formation and dimerization of 2-bromo-3-(glutathion-S-yl)hydroquinone. Molec. Pharmacol. 38: 121–127, 1990.Google Scholar
  46. 46.
    Monks, T. J., Lo, H. H. and Lau, S. S. (1994) Oxidation and acetylation as determinants of 2-bromocystein-S-ylhydroquinone-mediated nephrotoxicity. Chem. Res. Toxicol. 7, 495–502.PubMedCrossRefGoogle Scholar
  47. 47.
    Bai, F., Lau, S.S., and Monks, T.J. (1999) Glutathione and N-acetylcysteine conjugates of a-methyldopamine produce serotonergic neurotoxicity. Possible role in methylenedioxyamphetamine-mediated neurotoxicity.Chem. Res. Toxicol. 12, 1150–1157.PubMedCrossRefGoogle Scholar
  48. 48.
    Cadet, J.L., Ladenheim, B., Hirata, H., Rothman, R.B., Ali, S., Carlson, E., Epstein, C., and Moran, T.H. (1995) Superoxide radicals mediate the biochemical effects of methylenedioxymethamphetamine (MDMA): evidence from using CuZnsuperoxide dismutase transgenic mice. Synapse 2, 169–176.CrossRefGoogle Scholar
  49. 49.
    Schlosshauer, B. (1993). The blood-brain barrier: morphology, molecules, and neurothelin. Bioessays 15, 341–346.PubMedCrossRefGoogle Scholar
  50. 50.
    Oldendorf, W.H. and Szabo, J. (1976) Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am. J. Physiol. 230, 94–98.PubMedGoogle Scholar
  51. 51.
    Jackson, M. A., Lyon, J. P. and Siegel, J. (1971) Morphological changes in kidneys of rats exposed to dichloroacetylene-ether. Toxicol. Appl. Pharmacol. 18, 175–184.PubMedCrossRefGoogle Scholar
  52. 52.
    Reichert, D., Liebaldt, G., and Henschler, D. (1976) Neurotoxic effects of dichloroacetylene. Arch. Toxicol. 37, 23–38.PubMedCrossRefGoogle Scholar
  53. 53.
    Patel, N. J., Fullone, J., and Anders, M. W. (1993) Brain uptake of S-(1,2dichlorovinyl)-glutathione and S-(1,2-dichlorovinyl)-L-cysteine. Mol. Brain Res. 17, 53–58.PubMedCrossRefGoogle Scholar
  54. 54.
    Kannan, R., Kuhlenkamp, J.F., Jeandidier, E., Trinh, H., Ookhtens, M., and Kaplowitz, N. (1990) Evidence for carrier-mediated transport of glutathione across the blood-brain barrier in the rat. J. Clin. Invest. 85, 2009–2013.PubMedCrossRefGoogle Scholar
  55. 55.
    Wolff, J. E. A., Belloni-Olivi, L., Bressler, J. P. and Goldstein, G. W. (1992) yGlutamyl transpeptidase activity in brain microvessels exhibits regional heterogeneity. J. Neurochem. 58, 909–915.PubMedCrossRefGoogle Scholar
  56. 56.
    Cornford E.M., Braun, L.D., Crane, P.D., and Oldendorf, W.H. (1978) Blood-brain barier restriction of of peptides and the low uptake of enkephalins. Endocrinology 103,1297–1303.PubMedCrossRefGoogle Scholar
  57. 57.
    Baez, S., Segura-Aguilar, J., Widersten, M., Johansson A.S., and Mannervik, B. (1997) Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem. J. 324, 25–28.PubMedGoogle Scholar
  58. 58.
    Segura-Aguilar, J., Baez, S., Widersten, M., Welch, C.J., and Mannervik, B. (1997) Human class Mu glutathione transferases, in particular isoenzyme M2–2 catalyze detoxication of the dopamine metabolite aminochrome. J. Biol. Chem. 272, 5727–5731.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Terrence J. Monks
    • 1
  • Fengju Bai
    • 1
  • R. Timothy Miller
    • 1
  • Serrine S. Lau
    • 1
  1. 1.Center for Molecular and Cellular Toxicology Division of Pharmacology and ToxicologyCollege of Pharmacy, University of Texas at AustinAustinUSA

Personalised recommendations