Reactive Oxygen Species Analysis in Gastritis Patients and P53 Methylation Analysis in Gastric Tumor Cell Line Ags Infected by Helicobacter Pylori

  • Jochen Rudi
  • Benedikt Bruchhausen
  • Dirk Kuck
  • Wolfgang Stremmel
  • Axel von Herbay
  • Heinrich Bauer
  • Martin Berger
  • Robert W. Owen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 500)

Abstract

Epidemiological studies in humans and animal models support the idea that Helicobacter pylori a gram-negative spiral bacterium, first described by Warren and Marshall in 1983, is one of the risk factors for the induction of gastric cancer. H. pylori infection is the cause of chronic gastritis, peptic ulcer disease, gastric mucosa associated lymphoid tissue lymphoma and cancer of the distal stomach (1). Virulent or less virulent H. pylori strains can be determined by the presence or absence of cag pathogenicity island (PM) genes including the cagA gene and vacA genotypes. The expression of different genes of the cag PAI (total of 26 genes) seems to be essential for virulence. CagA and VacA proteins are highly antigenic (2). H. pylori strains expressing CagA show increased synthesis of chemokines, promote neutrophil infiltration in the gastric epithelium and stimulate synthesis of interleukin-8 (3). In the repetitive regions of the cag 7 gene within the cag PAI of H. pylori deletions and insertions are detected representing a target for mutations (4). In addition, Covacci et al (5) have suggested that new different quasi-species of H. pylori strains which possess or loose their cag PAI are generated during chronic infection by H. pylori.

Keywords

HPLC Filtration Lymphoma Codon EDTA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Axon, A.T., 1999, Are all helicobacters equal?Mechanisms of gastroduodenal pathology and their clinical implications, Gut,45 Suppl.1:1–4CrossRefGoogle Scholar
  2. 2).
    Mc Gee, D.J., May, C.A., Gamer, R.M., Himpsel, J.M., and Mobley, H.L.,1999, Isolation of Helicobacter pylori genes that modulate urease activity, J. Bacteriol.,181:2477–84Google Scholar
  3. 3).
    Li, S.D., Kersulyte, D., Lindley, I.J., Neelam, B., Berg, D.E., and Crabtree, J.E., 1999, Multiple genes in the left half of the pathogenicity island of Helicobacter pylori are required for tyrosine kinase dependent transcription of interleukin-8 in gastric epithelial cells, Infect-Immun.,67:3893–9PubMedGoogle Scholar
  4. 4).
    Liu, G., Mc Daniel, T.K., Falkow, S., and Karlin, S., Sequence anomalies in the Cag7 gene of the Helicobacter pylori pathogenicity island, Proc. Natl. Acad. Sci. USA, 96:7011–6PubMedCrossRefGoogle Scholar
  5. 6).
    Schistosomes, liver flukes, and Helicobacter pylori Monogr. evaluation carcinogenic risks hum., IARC,61,LyonGoogle Scholar
  6. 7).
    Dogusoy, G., Karayel, F.A., Gocener, S., and Goksel, S.,1999, Histopathological fearures and expression of Bc1–2 and p53 proteins in primary gastric lymphomas,Pathol. Oncol. Res.,5: 36–40PubMedCrossRefGoogle Scholar
  7. 8).
    Nardone,G., Staibano, S., Rocco, A., Mezza, E., D’armiento, F.P., Insabato, L., Coppola, A., Salvatore, G., Lucariello, A., Figura, N., De Rosa, G., and Budillon, G., 1999, Effect of Helicobacter pylori infection and its eradication on cell proliferation,DNA status,and oncogene expression in patients with chronic gastritis, Gut 44: 789–99PubMedCrossRefGoogle Scholar
  8. 9).
    Blok, P., Craanen, M.E., Offerhaus, G.J., Dekker, W., Kuipers, E.J., Meuwissen, S.G., and Tytgat, G.N., Molecular alterations in early gastric carcinomas. No apparent correlation with Helicobacter pylori status,1999, Am. J. Clin. Pathol., 111: 241–7PubMedGoogle Scholar
  9. 10).
    Isaacson, P.G., 1999, Gastric MALT lymphoma: from concept to cure, Ann. Oncol.:10: 637–45PubMedCrossRefGoogle Scholar
  10. 11).
    Murakami, K., Fujioka, T., Okimoto, T., Mitsuishi, Y., Oda, T., Nishizono, A., and Nasu M.,1999, Analysis of p53 gene mutations in Helicobacter pylori-associated gastritis mucosa in endoscopic biopsy specimens,Scand. J. Gastroenterol., 34: 474–7PubMedCrossRefGoogle Scholar
  11. 12).
    Chung, H., Rha, S., Kim, J., Noh, S., Roh, J., Min, J., and Kim, B., 1997, Different expression of biophenotypes based on p53 gene state in gastric cancer cell lines, Proc. Annu. Meet. Am. Assoc. Cancer Res., 38:A3675Google Scholar
  12. 14).
    Rudi, J., Kuck, D., Strand, S., von Herbay, A., Mariani, S.M., Krammer, P.H., Galle, P.R., and Stremmel W., 1998, Involvment of the CD95 (APO-1/Fas) receptor and ligand system in Helicobacter pylori-induced gastric epithelial apoptosis, J. Clin. Invest., 102: 1506–14PubMedCrossRefGoogle Scholar
  13. 15).
    Owen, R. W., Spiegelhalder, B. and Bartsch H (2000). Generation of reactive oxygen species by the faecal matrix. Gut 46, 225–232.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jochen Rudi
    • 1
  • Benedikt Bruchhausen
    • 1
  • Dirk Kuck
    • 1
  • Wolfgang Stremmel
    • 1
  • Axel von Herbay
    • 2
  • Heinrich Bauer
    • 3
  • Martin Berger
    • 4
  • Robert W. Owen
    • 5
  1. 1.Dept. of MedicineUniversity of HeidelbergHeidelbergGermany
  2. 2.Dept. of PathologyGerman Cancer Research CenterHeidelbergGermany
  3. 3.Dept. of Molecular ToxicologyGerman Cancer Research CenterHeidelbergGermany
  4. 4.Dept. of Toxicology and ChemotherapyGerman Cancer Research CenterHeidelbergGermany
  5. 5.Division of Toxicology and Cancer Risk FactorsGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations