Skip to main content

Formation and Fate of Reactive Intermediates of Haloalkanes, Haloalkenes, and α-Haloacids

  • Chapter
Biological Reactive Intermediates VI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 500))

Abstract

Haloalkanes, haloalkenes, and α-Haloacids are important industrial chemicals and environmental contaminants. For example, 1,2-dibromoethane and 1,2-dibromo-3-chloropropane were formerly used as fumigants and nematocides, trichloroethylene is a common environmental contaminant, and dichloroacetate (DCA), which is produced during the chlorination of drinking water, is present in finished drinking water supplies in the U.S. Many haloalkanes, haloalkenes, and α-haloacids are toxic, and some are rodent or suspected human carcinogens. The toxicity of these chemicals is associated with their bioactivation to reactive intermediates by the cytochromes P450 or glutathione transferases (GSTs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders, M.W., and Dekant, W., 1998, Glutathione-dependent bioactivation of haloalkenes, Ann. Rev. Pharmacol. Toxicol. 38:501.

    Article  CAS  Google Scholar 

  • Anderson, W.B., Board, P.G., Gargano, B., and Anders, M.W., 1999, Inactivation of glutathione transferase zeta by dichloroacetic acid and other fluorine-lacking α-haloalkanoic acids, Chem. Res. Toxicol. 12:1144.

    Article  PubMed  CAS  Google Scholar 

  • Blackburn, A.C., Tzeng, H.-F., Anders, M.W., and Board, P.G., 2000, Discovery of a functional polymorphism in human glutathione transferase zeta by expressed sequence tag database analysis, Pharmacogenetics 10:49.

    Article  PubMed  CAS  Google Scholar 

  • Board, P.G., Baker, R.T., Chelvanayagam, G., and Jermiin, L.S., 1997, Zeta, a novel class of glutathione transferases in a range of species from plants to humans, Biochem. J. 328:929.

    PubMed  CAS  Google Scholar 

  • Casanova, M., Deyo, D.F., and Heck, H.d.A., 1992, Dichloromethane (methylene chloride): metabolism to formaldehyde and formation of DNA-protein cross-links in B6C3F1 mice and Syrian golden hamsters, Toxicol. Appl. Pharmacol. 114:162.

    Article  PubMed  CAS  Google Scholar 

  • Curry, S.H., Lorenz, A., Chu, P.-I., Limacher, M., and Stacpoole, P.W., 1991, Disposition and pharmacodynamies of dichloroacetate (DCA) and oxalate following oral DCA doses, Biopharm. Drug Dispos. 12:375.

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Cañón, J.M., and Peñalva, M.A., 1998, Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue, J. Biol. Chem. 273:329.

    Article  PubMed  Google Scholar 

  • Gisi, D., Leisinger, T., and Vuilleumier, S., 1999, Enzyme-mediated dichloromethane toxicity and mutagenicity of bacterial and mammalian dichloromethane-active glutathione, Stransferases Arch. Toxicol. 73:71.

    Article  PubMed  CAS  Google Scholar 

  • Gonsowski, C.T., Laster, M.J., Eger II, E.I., Ferrell, L.D., and Kerschmann, R L, 1994, Toxicity of compound A in rats. Effect of a 3-hour administration, Anesthesiology 80:556.

    CAS  Google Scholar 

  • Gonsowski, C.T., Laster, M.J., Eger II, E.I., Ferrell, L.D., and Kerschmann, R.L., 1994, Toxicity of compound A in rats. Effect of increasing duration of administration, Anesthesiology 80:566.

    CAS  Google Scholar 

  • Hashmi, M., Dechert, S., Dekant, W., and Anders, M.W., 1994, Bioactivation of [13C]dichloromethane in mouse, rat, and human liver cytosol:13C Nuclear magnetic resonance spectroscopic studies, Chem. Res. Toxicol. 7:291.

    Article  PubMed  CAS  Google Scholar 

  • Holme, J.A., Søderlund, E.J., Brunborg, G., Omichinski, J.G., Bekkedal, K., Trygg, B., Nelson, S.D., and Dybing, E., 1989, Different mechanisms are involved in DNA damage, bacterial mutagenicity and cytotoxicity induced by 1,2-dibromo-3-chloropropane in suspensions of rat liver cells, Carcinogenesis 10:49.

    Article  PubMed  CAS  Google Scholar 

  • Iyer, R.A., and Anders, M.W., 1996, Cysteine conjugate β-lyase-dependent biotransformation of the cysteine S-conjugates of the sevoflurane degradation product Compound A in human, nonhuman primate, and rat renal cytosol and mitochondria, Anesthesiology 85:1454.

    Article  PubMed  CAS  Google Scholar 

  • Iyer, R.A., and Anders, M.W., 1997, Cysteine conjugate β-lyase-dependent biotransformation of the cysteine S-conjugates of the sevoflurane degradation product 2-(fluoromethoxy)- 1,1,3,3,3-pentafluoro-1-propene (Compound A), Chem. Res. Toxicol. 10:811.

    Article  PubMed  CAS  Google Scholar 

  • Iyer, R.A., Frink, E.J., Jr., Ebert, T.J., and Anders, M.W., 1998, Cysteine conjugate β-lyase-dependent metabolism of Compound A (2-(fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene) in human subjects anesthetized with sevoflurane and in rats given Compound A, Anesthesiology 88:611.

    Article  PubMed  CAS  Google Scholar 

  • Jin, L., Davis, M.R., Kharasch, E.D., Doss, G.A., and Baillie, T.A., 1996, Identification in rat bile of glutathione conjugates of fluoromethyl 2,2-difluoro-1-(trifluoromethyl)vinyl ether, a nephrotoxic degradate of the anesthetic agent sevoflurane, Chem. Res. Toxicol. 9:555.

    Article  PubMed  CAS  Google Scholar 

  • Kharasch, E.D., Hoffman, G.M., Thorning, D., Hankins, D.C., and Kilty, C.G., 1998, Role of the renal cysteine conjugate β-lyase pathway in inhaled compound A nephrotoxicity in rats, Anesthesiology 88:1624.

    Article  PubMed  CAS  Google Scholar 

  • Kharasch, E.D., Jubert, C., Spracklin, D.K., and Hoffman, G.M., 1999, Dose-dependent metabolism of fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A), an anesthetic degradation product, to mercapturic acids and 3,3,3-trifluoro-2(fluoromethoxy)propanoic acid in rats, Toxicol. Appl. Pharmacol. 160:49.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D.-H., and Guengerich, F.P., 1989, Excretion of the mercapturic acid S-[2-(N 7guanyl)ethyl]-N- acetylcysteine in urine following administration of ethylene dibromide to rats, Cancer Res 49:5843.

    PubMed  CAS  Google Scholar 

  • Livesey, J.C., Anders, M.W., Langvardt, P.W., Putzig, C.L., and Reitz, R.H., 1982, Stereochemistry of the glutathione-dependent biotransformation of vicinal-dihaloalkanes to alkenes, Drug Metab. Dispos. 10:201.

    PubMed  CAS  Google Scholar 

  • Martin, J.L., Laster, M.J., Kandel, L., Kerschmann, R.L., Reed, G.F., and Eger II, E.I., 1996, Metabolism of Compound A by renal cysteine-S-conjugate β-lyase is not the mechanism of Compound A-induced renal injury in the rat, Anesth. Analg. 82:770.

    PubMed  CAS  Google Scholar 

  • Ozawa, N., and Guengerich, F.P., 1983, Evidence for formation of an S-[2-(N 7guanyl)ethyl]glutathione adduct in glutathione-mediated binding of the carcinogen 1,2dibromoethane to DNA, Proc. Natl. Acad. Sci. USA 80:5266.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, P.G., Omichinski, J.G., Myers, T.G., Soderlund, E.J., Dybing, E., and Nelson, S.D., 1990, Metabolic activation of 1,2-dibromo-3-chloropropane to mutagenic metabolites: Detection and mechanism of formation of (Z)- and (E)-2-chloro-3-(bromomethyl)oxirane, Chem. Res. Toxicol. 3:458.

    Article  PubMed  CAS  Google Scholar 

  • Sherratt, P.J., Pulford, D.J., Harrison, D.J., Green, T., and Hayes, J.D., 1997, Evidence that human class Theta glutathione S-transferase T1–1 can catalyse the activation of dichloromethane, a liver and lung carcinogen in the mouse - Comparison of the tissue distribution of GST T1–1 with that of classes Alpha, Mu and Pi GST in human, Biochem. J. 326:837.

    PubMed  CAS  Google Scholar 

  • Stacpoole, P.W., Henderson, G.N., Yan, Z.M., and James, M.O., 1998, Clinical pharmacology and toxicology of dichloroacetate, Environ. Health Perspect. 106 (Suppl. 4):989.

    PubMed  CAS  Google Scholar 

  • Thier, R., Taylor, J.B., Pemble, S.E., Humphreys, W.G., Persmark, M., Ketterer, B., and Guengerich, F.P., 1993, Expression of mammalian glutathione S-transferase 5–5 in Salmonella typhimurium TA1535 leads to base-pair mutations upon exposure to dihalomethanes, Proc. Natl. Acad. Sci. USA 90:8576.

    Article  PubMed  CAS  Google Scholar 

  • Tong, Z., Board, P.G., and Anders, M.W., 1998, Glutathione transferase zeta catalyzes the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid, Biochem. J. 331:371.

    PubMed  CAS  Google Scholar 

  • Tong, Z., Board, P.G., and Anders, M.W., 1998, Glutathione transferase Zeta-catalyzed biotransformation of dichloroacetic acid and other α-haloacids, Chem. Res. Toxicol. 11:1332.

    Article  PubMed  CAS  Google Scholar 

  • Tzeng, H.-F., Blackburn, A.C., Board, P.G., and Anders, M.W., 2000, Polymorphism-and species-dependent inactivation of glutathione transferase zeta by dichloroacetate, Chem. Res. Toxicol. 13:231.

    Article  PubMed  CAS  Google Scholar 

  • Uttamsingh, V., Iyer, R.A., Baggs, R.B., and Anders, M.W., 1998, Fate and toxicity of 2(fluoromethoxy)-1,1,3,3,3-pentafluoro-l-propene (Compound A)-derived mercapturates in male, Fischer 344 rats, Anesthesiology 89:1174.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anders, M.W. (2001). Formation and Fate of Reactive Intermediates of Haloalkanes, Haloalkenes, and α-Haloacids. In: Dansette, P.M., et al. Biological Reactive Intermediates VI. Advances in Experimental Medicine and Biology, vol 500. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0667-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0667-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5185-6

  • Online ISBN: 978-1-4615-0667-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics