Skip to main content

Biological Reactive Intermediates and Mechanisms of Cell Death

  • Chapter
Biological Reactive Intermediates VI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 500))

Abstract

Apoptosis and necrosis are two modes of cell death with distinct morphological and biochemical features. Apoptosis is an active process characterized by cell shrinkage, nuclear and cytoplasmic condensation, chromatin fragmentation and phagocytosis. In contrast, necrosis is a passive form of cell death associated with inflammation resulting from cellular and organelle swelling, rupture of the plasma membrane and spilling of cellular contents into the intercellular milieu. Lethal levels of biological reactive intermediates may trigger either apoptotic or necrotic cell death, depending on the cell type and severity of insult. Further, effectuation of the apoptotic death program requires maintenance of a sufficient intracellular energy level and of a redox state compatible with caspase activity. Thus, ATP depletion or severe oxidative stress may redirect otherwise apoptotic cell death to necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Thor, M.T. Smith, P. Hartzell, G. Bellomo, S. Jewell, and S. Orrenius, The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells, J. Biot. Chem 257:12419 (1982).

    PubMed  CAS  Google Scholar 

  2. S. Jewell, G. Bellomo, H. Thor, S. Orrenius, and M.T. Smith, Bleb formation in hepatocytes during drug metabolism is caused by disturbances in thiol and calcium ion homeostasis, Science 217:1257 (1982).

    Article  PubMed  CAS  Google Scholar 

  3. H. Stridh, M. Kimland, D.P. Jones, S. Orrenius, and M.B. Hampton, Cytochrome c release and caspase activation in hydrogen peroxide-and tributyltin-induced apoptosis, FEBSLett 429:351 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. J. Yang, X. Liu, K. Bhalla, C.N. Kim, A.M. Ibrado, J. Cai, T.-I. Pen, D.P. Jones, and X. Wang, Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked, Science 275:1129 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. R.M. Kluck, E. Bossy-Wetzel, D.R. Green, and D.D. Newmeyer, The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis, Science 275:1132 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. P. Li, D. Nijhawan, I. Budihardjo, S.M. Srinivasula, M. Ahmad, E.S. Alnemri, and X. Wang, Cytochrome c and dATP dependent formation of Apaf-1/caspase-9 complex initiate an apoptotic protease cascade, Cell 91:479 (1997).

    Article  PubMed  CAS  Google Scholar 

  7. M. Crompton, The mitochondrial permeability transition pore and its role in cell death, Biochem. J 341:233 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. M.B. Hampton, B. Zhivotovsky, A.F. Slater, D.H. Burgess, and S. Orrenius, Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts, Biochem. J 329:95 (1998).

    PubMed  CAS  Google Scholar 

  9. A.P. Halestrap, Interaction between oxidative stress and calcium overload on mitochondrial function, in: Mitochondria: DNA Proteins and Disease V. Darley-Usmar and A.H.V. Schapira, eds., Portland Press, London (1994).

    Google Scholar 

  10. M. Crompton, The mitochondrial permeability transition pore and its role in cell death, Biochem.J 341:233 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. S. Shimizu, M. Narita, and Y. Tsujimoto, Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC, Nature 399:483 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. S. Shimizu and Y. Tsujimoto, Proapoptotic BH3-only Bcl-2 family members induced cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity Proc. Natl. Acad. Sci. USA 97:577 (2000).

    Google Scholar 

  13. I. Martinou, S. Desagher, R. Eskes, B. Antonsson, E. Andre, S. Fakan, and J.C. Martinou, The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event, J. Cell. Biol 144:883 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. A. Samali, H. Nordgren, B. Zhivotovsky, E. Peterson, and S. Orrenius, A comparative study of apoptosis and necrosis in HepG2 cells: Oxidant-induced caspase inactivation leads to necrosis, Biochem. Biophys. Res. Commun 255:6 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. E.S. Alnemri, D.J. Livingston, D.W. Nicholson, G. Salvesen, N.A. Thornberry, W.W. Wong, and J. Yuan, Human ICE/CED-3 protease nomenclature, Cell 87:171 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. N.A. Thornberry and Y. Lazebnik, Caspases: enemies within, Science 28:1312 (1998).

    Article  Google Scholar 

  17. A. Samali, B. Zhivotovsky, D.P. Jones, S. Nagata, and S. Orrenius, Apoptosis: cell death defined by caspase activation, Cell Death DJ 6:495 (1998).

    Article  Google Scholar 

  18. D.W. Nicholson and N.A. Thornberry, Caspases: killer proteases, Trends Biochem. Sci 22:299 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. B. Zhivotovsky, A. Samali, A. Gahm, and S. Orrenius, Caspases: their intracellular localization and translocation during apoptosis, Cell Death Differ 6:644 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. M. Whyte and G. Evan, (1995) Apoptosis. The last cut is the deepest, Nature 376:17 (1995).

    Google Scholar 

  21. E.A. Slee, M.T. Harte, R.M. Kluck, B.B. Wolf, C.A. Casiano, D.D. Newmeyer, H.G. Wang, J.C. Reed, D.W. Nicholson, E.S. Alnemri, D.R. Green, and S.J. Martin, Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9dependent manner, J. Cell Biol 144:281 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. J.D. Robertson, S. Orrenius, and B. Zhivotovsky, Review: Nuclear events in apoptosis, J. Struct. Biol 129:346 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. X. Liu, C.N. Kim, J. Yang, R. Jemmerson, and X. Wang, Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c, Cell 86:147 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. S.A. Susin, H.K. Lorenzo, N. Zamzami, I. Marzo, B.E. Snow, G.M. Brothers, J. Mangion, E. Jacotot, P. Costantini, M. Loeffler, N. Larochette, D.R. Goodlett, R. Aebersold, D.P. Siderovski, J.M. Penninger, and G. Kroemer, Molecular characterization of mitochondrial apoptosis-inducing factor, Nature 397:441 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. C. Köhler, A. Gahm, T. Noma, A. Nakazawa, S. Orrenius, and B. Zhivotovsky, Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis, FEBS Lett 447:10 (1999).

    Article  PubMed  Google Scholar 

  26. H. Zou, W.J. Henzel, X. Liu, A. Lutschg, and X. Wang, Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3, Cell 90:405 (1997).

    Article  PubMed  CAS  Google Scholar 

  27. X.M. Sun, M. MacFarlane, J. Zhuang, B.B. Wolf, D.R. Green, and G.M. Cohen, Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis, J. Biol. Chem 274:5053 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. S.M. Srinivasula, M. Ahmad, T. Fernandes-Alnemri, G. Litwack, and E.S. Alnemri, Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases, Proc. Natl. Acad. Sci. USA 93:14486 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. A. Strasser and K. Newton, FADD/MORTI, a signal transducer that can promote cell death or cell growth, Int. J Biochem. Cell Biol 31:533 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. M. Muzio, A.M. Chinnaiyan, F.C. Kischkel, K. O’Rourke, A. Shevchenko, J. Ni, C. Scaffidi, J.D. Bretz, M. Zhang, R. Gentz, M. Mann, P.H. Krammer, M.E. Peter, and V.M. Dixit, FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex, Cell 85:817 (1996).

    Article  PubMed  CAS  Google Scholar 

  31. M.P. Boldin, T.M. Goncharov, Y.V. Goltsev, and D. Wallach, Involvement of MACH, a novel MORTI/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85:803 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. J.P. Medema, C. Scaffidi, F.C. Kischkel, A. Shevchenko, M. Mann, P.H. Krammer, and M.E. Peter FLICE is activated by association with the CD95 death-inducing signaling complex (DISC), EMBO J 16:2794 (1997).

    Article  PubMed  CAS  Google Scholar 

  33. T. Kuwana, J.J. Smith, M. Muzio, V. Dixit, D.D. Newmeyer, and S. Kornbluth, Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c, J. Biol. Chem 273:16589 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. E. Bossy-Wetzel and D.R. Green, Caspases induce cytochrome c release from mitochondria by activating cytosolic factors, J. Biol. Chem 274:17484 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. H. Li, H. Zhu, C.J. Xu, and J. Yuan, Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis, Cell 94:491 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. X. Luo, I. Budihardjo, H. Zou, C. Slaughter, and X. Wang, Bid, a Bc12 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors, Cell 94:481 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. E.S. Alnemri, D.J. Livingston, D.W. Nicholson, G. Salvesen, N.A. Thornberry, W.W. Wong, and J. Yuan, Human ICE/CED-3 protease nomenclature, Cell 87:171 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. C.S. Nobel, D.H. Burgess, B. Zhivotovsky, M.J. Burkitt, S. Orrenius, and A.F. Slater, Mechanism of dithiocarbamate inhibition of apoptosis: thiol oxidation by dithiocarbamate disulfides directly inhibits processing of the caspase-3 proenzyme, Chem. Res. Toxicol 10:636 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. M.B. Hampton and S. Orrenius, Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis, FEBS Lett 414:552 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. C.S. Nobel, M. Kimland, D.W. Nicholson, S. Orrenius, A.F. Slater, Disulfiram is a potent inhibitor of proteases of the caspase family, Chem. Res. Toxicol 10:1319 (1997).

    Article  PubMed  CAS  Google Scholar 

  41. D. Di Monte, G. Bellomo, H. Thor, P. Nicotera, S. Orrenius, Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in intracellular Ca2+ homeostasis, Arch. Biochem. Biophys 235:343 (1984).

    Article  PubMed  Google Scholar 

  42. P. Nicotera, M. Leist, and E. Ferrando-May, Intracellular ATP, a switch in the decision between apoptosis and necrosis, Toxicol. Lett 102–103:139 (1998).

    Google Scholar 

  43. M. Leist, B. Single, A.F. Castoldi, S. Kuhnle, P. Nicotera, Intracellular ATP concentration: a switch deciding between apoptosis and necrosis, J Exp. Med 185:1481 (1997).

    Article  PubMed  CAS  Google Scholar 

  44. G.C. Li and G.M. Hahn, A proposed operational model of thermotolerance based on effects of nutrients and the initial treatment temperature, Cancer Res 40:4501 (1980).

    PubMed  CAS  Google Scholar 

  45. S. Lindquist and E.A. Craig, The heat-shock proteins, Annu. Rev. Genet 22:631 (1988).

    Article  PubMed  CAS  Google Scholar 

  46. P.L. Moseley, Heat shock proteins and heat adaptation of the whole organism, J. Appl. Physiol 83:1413 (1997).

    PubMed  CAS  Google Scholar 

  47. A. Samali and T.G. Cotter, Heat shock proteins increase resistance to apoptosis, Exp. Cell. Res 223:163 (1996).

    Article  PubMed  CAS  Google Scholar 

  48. A.P. Arrigo, Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death, Biol. Chem 379:19 (1998).

    PubMed  CAS  Google Scholar 

  49. R. Foresti, P. Sarathchandra, J.E. Clark, C.J. Green, and R. Motterlini, Peroxynitrite induces heme oxygenase-1 in vascular endothelial cells: a link to apoptosis, Biochem. J 339:729 (1999).

    Article  PubMed  CAS  Google Scholar 

  50. C.D. Ferris, S.R. Jaffrey, A. Sawa, M. Takahashi, S.D. Brady, R.K. Barrow, S.A. Tysoe, H. Wolosker, D.E. Baranano, S. Dore, K.D. Poss, and S.H. Snyder, Haem oxygenase-1 prevents cell death by regulating cellular iron, Nat. Cell Biol. 1:152 (1999).

    Article  PubMed  CAS  Google Scholar 

  51. P. Mehlen, X. Preville, P. Chareyron, J. Briolay, R. Klemenz, A.P. Arrigo, Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts, J Immunol 154:363 (1995).

    PubMed  CAS  Google Scholar 

  52. X. Preville, F. Salvemini, S. Giraud, S. Chaufour, C. Paul, G. Stepien, M.V. Ursini, and A.P. Arrigo, Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery, Exp. Cell Res 247:61 (1999).

    Article  CAS  Google Scholar 

  53. F. Salvemini, A. Franze, A. Iervolino, S. Filosa, S. Salzano, and M.V. Ursini, Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression, J. Biol. Chem 274:2750 (1999).

    Article  PubMed  CAS  Google Scholar 

  54. A. Samali, C.I. Holmberg, L. Sistonen, and S. Orrenius, Thermotolerance and cell death are distinct cellular responses to stress: Dependence on heat shock proteins, FEBS Lett 461:306 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robertson, J.D., Chandra, J., Gogvadze, V., Orrenius, S. (2001). Biological Reactive Intermediates and Mechanisms of Cell Death. In: Dansette, P.M., et al. Biological Reactive Intermediates VI. Advances in Experimental Medicine and Biology, vol 500. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0667-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0667-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5185-6

  • Online ISBN: 978-1-4615-0667-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics