Development and Application of High-Resolution Adaptive Numerical Techniques in Shock Wave Research Center

  • T. Saito
  • P. Voinovich
  • E. Timofeev
  • K. Takayama

Abstract

A second-order accurate Godunov-0type scheme has been implemented using 2-D and 3-D locally-adaptive unstructured grids. The fundamentals of the method, specifics of vector- and massively parallel processing, and some sample applications are presented in this paper.

Keywords

Anisotropy Manifold Attenuation Helium Propa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-El-Fattah AM, Henderson LF, Lozzi A (1976). Precursor shock waves at a slow/fast gas interface. J. Fluid Mech. 76, pp 157–176.MATHCrossRefGoogle Scholar
  2. Abd-El-Fattah AM, Henderson LF (1978). Shock waves at a fast-slow gas interface. J. Fluid Mech. 86, pp 15–32.CrossRefGoogle Scholar
  3. Babinsky H, Onodera O, Takayama K, Timofeev E, Voinovich P (1996). The influence of geometric variations on the shock focusing in cylindrical cavities. In: Shock Waves, Proc. of the 20th Int. Symp. on Shock Waves (Pasadena, USA, 23–28 July 1995), Sturtevant B, Shepherd JE, Hornung HG (Editors), World Scientific Publishing, 1, pp 495–500.Google Scholar
  4. Babinsky H, Onodera O, Takayama K, Saito T, Voinovich P, Timofeev E (1998). The influence of entrance geometry of circular reflectors on the shock wave focusing. Computers and Fluids 27, No. 5–6, pp 611–618.MATHCrossRefGoogle Scholar
  5. Fursenko AA, Sharov DM, Timofeev EV, Voinovich PA (1992). Numerical simulation of shock wave interactions with channel bends and gas nonuniformities. Computers and Fluids 21, pp 377–396.CrossRefGoogle Scholar
  6. Fursenko AA, Mende NP, Oshima K, Sharov DM, Timofeev EV, Voinovich PA (1993a). Numerical simulation of propagation of shock waves through channel bends. Computational Fluid Dynamics Journal 2, pp 1–36.Google Scholar
  7. Fursenko AA, Sharov DM, Timofeev EV, Voinovich PA (1993b). High-resolution schemes and unstructured grids in transient shocked flow simulation. Lecture Notes in Physics 414, pp 250–254.CrossRefGoogle Scholar
  8. Galyukov AO, Voinovich PA (1993). Two-dimensional triangular unstructured grid generator. Advanced Technology Center, St. Petersburd, Russia (unpublished).Google Scholar
  9. Galyukov A, Voinovich P (1994). Three-dimensional unstructured tetrahedral grid generator. Advanced Technology Center, St.Petersburg, Russia (unpublished).Google Scholar
  10. Galyukov A, Voinovich P, Timofeev EV (1997). In: Shock wave reflection over wedges: a benchmark test for CFD and experiments. Shock Waves 7, No. 4, pp 196–199.Google Scholar
  11. Haas J-F, Sturtevant B (1987). Interaction of weak shock waves with cylindrical and spherical gas inhomogenieties. J. Fluid Mech. 181, pp 41–76.CrossRefGoogle Scholar
  12. Henderson LF (1989). On the refraction of shock waves. J. Fluid Mech. 198, pp 365–386.MathSciNetMATHCrossRefGoogle Scholar
  13. Henderson LF, Colella P, Puckett EG (1991). On the refraction of shock waves at a slow-fast gas interface. J. Fluid Mech. 224, pp 1–27.CrossRefGoogle Scholar
  14. Löhner R (1987). The efficient simulation of strongly unsteady flows by the finite element method. AIAA Paper 87–0555.Google Scholar
  15. Löhner R (1989). Adaptive h-refinement on 3-D unstructured grids for transient problems. AIAA Paper 89–0365.Google Scholar
  16. Picone JM, Boris JP (1988). Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, pp 23–51.CrossRefGoogle Scholar
  17. Rodionov AV (1987). Improvement of the approximation order in the Godunov scheme. Zh. Vychisl. Mat. Mat. Fiz. 27, pp 1853–1860 (in Russian).MathSciNetGoogle Scholar
  18. Saito T, Voinovich P, Timofeev E, Hayakawa S, Onodera O, Takayama K (1997). Propagation of blast waves induced by volcano eruptions: new experimental and numerical tools. In: Shock Waves, Proc. of the 21st Int. Symp. on Shock Waves (Great Keppel Island, Australia, 20–25 July 1997), Houwing AFP (Editor-in-Chief), Panther Publishing and Printing, 2, pp 1431–1435.Google Scholar
  19. Saito T, Timofeev E, Sun M, Takayama K (1999). Numerical and experimental study of 2-D nozzle starting process. Proceedings of the 22th Int. Symp. on Shock Waves, Imperial College, London, 1999 (to be published).Google Scholar
  20. Sasoh A, Matsuoka K, Nakashio K, Timofeev E, Takayama K, Saito T (1997). Attenuation of weak shock waves along pseudo-perforated walls. In: Shock Waves, Proc. of the 21st Int. Symp. on Shock Waves (Great Keppel Island, Australia, 20–25 July 1997), Houwing AFP (Editor-in-Chief), Panther Publishing and Printing, 2, pp 749–754.Google Scholar
  21. Sasoh A, Matsuoka K, Nakashio K, Timofeev E, Takayama K, Voinovich P, Saito T, Hirano S, Ono S, Makino Y (1998). Attenuation of weak shock waves along pseudoperforated walls. Shock Waves 8, No 3, pp 149–159.CrossRefGoogle Scholar
  22. Sun M, Takayama K (1996). A holographic interferometric study of shock wave focusing in a circular reflector. Shock Waves 6, pp 323–336.CrossRefGoogle Scholar
  23. Sun M, Takayama K (1997). The formation of a secondary shock wave behind a shock wave diffracting at a convex corner. Shock Waves 7, pp 287–295.MATHCrossRefGoogle Scholar
  24. Sun M, Takayama K, Timofeev E, Voinovich PA (1997). Numerical simulation of the aerodynamic shock-cylinder interaction. In: Shock Waves, Proc. of the 21st Int. Symp. on Shock Waves (Great Keppel Island, Australia, 20–25 July 1997), Houwing AFP (Editor-in-Chief), Panther Publishing and Printing, 2, pp 1481–1486.Google Scholar
  25. Takayama K, Kleine H, Groenig H (1987). An experimental investigation of the stability of converging cylindrical shock waves in air. Exp. Fluids 5, pp 315–322.CrossRefGoogle Scholar
  26. Timofeev E, Takayama K, Voinovich P (1997a). Numerical and experimental observation of three-dimensional unsteady shock wave structures. AIAA Paper 97–0070.Google Scholar
  27. Timofeev E, Takayama K, Voinovich P, Sislian J, Saito T (1997b). Numerical and experimental study of three-dimensional unsteady shock wave interaction with an oblique cylinder. In: Shock Waves, Proc. of the 21st Int. Symp. on Shock Waves (Great Keppel Island, Australia, 20–25 July 1997), Houwing AFP (Editor-in-Chief), Panther Publishing and Printing, 2, pp 1487–1492.Google Scholar
  28. Timofeev E, Sokolov I, Voinovich P, Saito T, Takayama K (1998a). Numerical simulation of an intense shock wave implosion in an axisymmetric compartment. Review of High Pressure Science and Technology 7, pp 909–911.CrossRefGoogle Scholar
  29. Timofeev E, Voinovich P, Takayama K, Saito T, Hyodo Y, Nakamura H (1998b). Adaptive unstructured simulation of three-dimensional blast waves with ground surface effect. AIAA Paper 98–0544.Google Scholar
  30. Timofeev E, Skews BW, Voinovich PA, Takayama K (1999). The influence of unsteadiness and three-dimensionality on regular-to Mach reflection transitions: a high-resolution study. Proceedings of the 22th Int. Symp. on Shock Waves, Imperial College, London, 1999 (to be published).Google Scholar
  31. Voinovich P, Timofeev E, Takayama K, Saito T, Galyukov A (1998). 3-D unstructured adaptive supercomputing for transient problems of volcanic blast waves. AIAA Paper 98–0540.Google Scholar
  32. Voinovich PA, Timofeev EV, Saito T, Takayama K, Hyodo Y, Galyukov AO (1999). An adaptive shock-capturing method in real 3-D applications, Proceedings of the 22th Int. Symp. on Shock Waves, Imperial College, London, 1999 (to be published).Google Scholar
  33. Zeng S, Takayama K (1996). On the refraction of shock wave over a slow-fast gas interface. Acta Astronautica 38, No. 11, pp 829–838.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • T. Saito
    • 1
  • P. Voinovich
    • 1
  • E. Timofeev
    • 1
  • K. Takayama
    • 1
  1. 1.Shock Wave Research Center, Institute of Fluid ScienceTohoku UniversityAoba-ku, SendaiJapan

Personalised recommendations