An Artificial Compression Procedure Via Flux Correction

  • V. Martínez

Abstract

We present a new procedure to sharpen contact discontinuities. Our procedure corrects the linear flux to obtain a consistent dynamical behaviour. The equivalence between the original equation and the modified equation is proved.

Keywords

Agated Advection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harabetian E (1992). A Subcell Resolution Method for Viscous Systems of Conservation Laws. J. Comp. Phys. 103, pp 350–358.MathSciNetMATHCrossRefGoogle Scholar
  2. Harten A (1989). ENO Schemes with Subcell Resolution. J. Comp. Phys. 83, pp 148–184.MathSciNetMATHCrossRefGoogle Scholar
  3. Mao D K (1991). A Treatment of Discontinuities in Shock-capturing Finite Difference Methods. J. Comp. Phys. 92, pp 422–455.MATHCrossRefGoogle Scholar
  4. Mao D K (1992). A Treatment of Discontinuities for Finite Difference Methods. J. Comp. Phys. 103, pp 359–369.MATHCrossRefGoogle Scholar
  5. Nessyahu H and Tadmor E (1990). Non-oscillatory Central Differencing for Hyperbolic Conservation Laws. J. Comp. Phys. 87, pp 408–463.MathSciNetMATHCrossRefGoogle Scholar
  6. Smoller J (1994). Shock Waves and Reaction-Diffusion Equations. Springer-Verlag.MATHCrossRefGoogle Scholar
  7. Yang H (1990). An Artificial Compression Method for ENO Schemes: The Slope Modification Method. J. Comp. Phys. 89, pp 125–160.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • V. Martínez
    • 1
  1. 1.Departament de MatemàtiquesUniversitat Jaume ICastellóSpain

Personalised recommendations