Skip to main content

A Godunov-Type Method for Studying the Linearised Stability of a Flow. Application to the Richtmyer-Meshkov Instability

  • Chapter
Godunov Methods

Abstract

We introduce a direct formulation of the linearisation of a non- linear hyperbolic system of conservation laws at a discontinuous solution. In this formulation, the solution of the linearised Cauchy problem is to be found in a space of measures. We give a numerical scheme of solution of this Cauchy problem based on a Roe linearisation and we apply it to study the linear phase of the Richtmyer-Meshkov instability in Lagrangian coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bouchut F and James F (1997) One-dimensional transport equations with discontinuous coefficients, Nonlinear Analysis TMA32, 891-933.

    Article  MathSciNet  Google Scholar 

  • Cargo P, Gallice G and Raviart P A (1996). Construction d’une linéarisée de Roe pourles équations de la MHD idéale, Num. Anal., C.R. Acad. Sci.Paris 323 (Série I) ,951-955.

    MATH  Google Scholar 

  • Dal Maso G, Le Floch P and Murat F (1983). Definition and weak stability of noncon-servative products, J. Math. Pures Appl.74 , 483-548.

    Google Scholar 

  • Gosse L and James F. Numerical approximations of one-dimensional conservation equations with discontinuous coefficients (to appear).

    Google Scholar 

  • Godlewski E and Raviart P A (1999). Numerical Approximation of hyperbolic Systems of conservation laws, Appl. Math. Science 118, Springer, New York.

    MATH  Google Scholar 

  • Godlewski E and Raviart P A (1999). The linearized stability of solutions of nonlinear hyperbolic systems of conservation laws. A general numerical approach, Mathematics and Computers in Simulation50, 77-95.

    Article  Google Scholar 

  • Godlewski E, Olazabal M and Raviart P A (1998). On the linearization of hyperbolic systems of conservation laws. Application to stability, Equations aux dérivées partielles et Applications (Articles dédiés à J.-L. LIONS), Gauthier Villars, Paris , 549-570.

    Google Scholar 

  • Godlewski E, Olazabal M, Raviart P A (1999). On the linearization of systems of conservation laws for fluids at a material contact discontinuity, J. Math. Pures Appl.,78, 1013-1042.

    Article  MathSciNet  Google Scholar 

  • Majda A (1983) The stability of multidimensional shock fronts, Memoirs of the A.M.S. 275, Amer. Math. Soc, Providence.

    Book  Google Scholar 

  • Meshkov E E (1969). Izv. Akad. Nauk SSSR, Mekh.Zhidk.Gaz 5

    Google Scholar 

  • Meyer K A and Blewet P J(1972). Numerical investigation of the stability of a shock-accelerated interface between two fluids, Phys. Fluids15 (5), 735-759.

    Article  Google Scholar 

  • Munz C D (1994). On Godunov-type schemes for lagrangian gaz dynamics, SIAM J.Numer.Anal.31 (1), 17-42.

    Article  MathSciNet  Google Scholar 

  • Olazabal M (1998). ’Modélisation numérique de problèmes de stabilité linéaire. Application aux équations de la dynamique des gaz et de la MHD ideale’, Doctoral dissertation, Université P. et M. Curie, Paris.

    Google Scholar 

  • Olazabal M, Cahen J and Raviart P A (1999). Numerical modeling of linear stability problems applied to gas dynamics and MHD, in Proceedings of the First international conference on Inertial Fusion Science and Applications (IFSA’99), Bordeaux, Elsevier.

    Google Scholar 

  • Olazabal M, Raviart P A and Cahen J (2000). Numerical modeling using Lagrangian formalism for studying the linear stability of compressible flows (to appear)

    Google Scholar 

  • Richtmyer R D (1960). Taylor instability in shock acceleration of compressible fluids, Comm. Pure Appl. Math.13, 297-319.

    Article  MathSciNet  Google Scholar 

  • Vandenboomgaerde M, Mugler C and Gauthier S (1998). Impulsive model for the Richtmyer-Meshkov instability, Phys. Rev. E58 (2), 1874-1882.

    Article  Google Scholar 

  • Wouchuk J G and Nishihara K (1996). Linear perturbation growth at a shocked interface, Phys. Plasmas3 (10), 3761-3776.

    Article  Google Scholar 

  • Yang Y, Zhang Q and Sharp D H (1994). Small amplitude theory of Richtmyer-Meshkov instability, Phys. Fluids6, 1856-1873.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Godlewski, E., Olazabal, M., Raviart, PA. (2001). A Godunov-Type Method for Studying the Linearised Stability of a Flow. Application to the Richtmyer-Meshkov Instability. In: Toro, E.F. (eds) Godunov Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-0663-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0663-8_38

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-5183-2

  • Online ISBN: 978-1-4615-0663-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics