Skip to main content

Lagrangian Systems of Conservation Laws and Approximate Riemann Solvers

  • Chapter
Godunov Methods

Abstract

We sum up some new results concerning the mathematical structure of Lagrangian systems of conservation laws. These results include the assumption of Galilean invariance in the hypothesis and extend the classical symmetrization theorem of S. K. Godunov. Based on this representation theorem it is straightforward to derive numerical schemes which are non linearly stable, due to an entropy inequality satisfied by the scheme. We present a numerical application to an ICF-like calculation : the so-called Ti,Te model for a ionized gas with ionic and electronic temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bazarov I (1989). Thermodynamique. Edition MIR (in french).

    Google Scholar 

  • Bezard F and Després B (1999). An entropic solver for ideal Lagrangian Magnetohydro-dynamics. Jour, of Comp. Phys..

    MATH  Google Scholar 

  • Callen H B (1985). Thermodynamics and introduction to thermostatistics. John WILEY & SONS.

    MATH  Google Scholar 

  • Coquel F (1998). Schémas hyperboliques. INRIA-France-1998.

    Google Scholar 

  • Coquel F and Perthame B (1998). Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics. SIAM J. Numer. Anal., 35(6):2223–2249.

    Article  MathSciNet  Google Scholar 

  • Després B (Submitted to Numer. Math.). Structure of lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition .

    Google Scholar 

  • Després B (1997).Inégalité entropique pour un solveur conservatif du systéme de la dynamique des gaz en coordonnées de Lagrange. C. R. Acad. Sci., Série I, 324:1301–1306.

    MathSciNet  MATH  Google Scholar 

  • Després B (1998).Entropy inequality for high order discontinuous Galerkin approximation of Euler equations. VII conference on hyperbolic problems, ETHZ-Zurich.

    MATH  Google Scholar 

  • Després B (1999).Discontinuous Galerkin Method for the numerical solution of Euler equations in axisymmetric geometry. DGM International Symposium, Newport.

    MATH  Google Scholar 

  • Després B (1999). Structure des systèmes de lois de conservation en variables Lagrangiennes . Comptes Rendus de VAcadémie des Sciences, Série I, 328:721–724.

    MATH  Google Scholar 

  • Gallice G (1995).Résolution numérique des équations de la magnétohydrodynamique idéale. In GdR SPARCH, editor, Proceedings of the conference. Méthodes numériques pour la MHD.

    Google Scholar 

  • Godlewski E and Raviart P A (1996). Numerical approximation of hyperbolic systems of conservation laws. Number 118. Springer Verlag New York. AMS 118.

    Book  Google Scholar 

  • Godunov S K (1986). Lois de conservation et integrales d’énergie des equations hyperboliques. In Nonlinear hyperbolic problems, pages 135–149. Springer-Verlag. Lecture notes in mathematics.

    Google Scholar 

  • Godunov S K (1999). Reminiscences about difference schemes. Journal of Computational Physics, (153):6–25.

    Google Scholar 

  • Godunov S K (1959). A difference scheme for numerical computation of discontinuous solutions of equations of fluid dynamics. Mat. Sb., 89:271–306.

    MATH  Google Scholar 

  • Godunov S K (1960). Sur la notion de solution généralisée. DAN, 134:1279–1282.

    Google Scholar 

  • Harten A, Hyman J M, and Lax P D (1976). On finite difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math., 29:297–322.

    Article  MathSciNet  Google Scholar 

  • Jaouen S (1997). Solveur entropique d’ordre élevé pour les équations de l’hydrodynamique à deux températures. Technical report, Université de Bordeaux. Mémoire de fin d’étude.

    Google Scholar 

  • Van Leer B (1982). Flux-vector splitting for the euler equations. Technical Report 82–30, ICASE.

    Google Scholar 

  • Munz D (1994). On Goudounov type schemes for Lagrangian formulations. SIAM Journal of Numer. Anal., 31:17–42.

    Article  Google Scholar 

  • Von Neumann J and Richtmyer R D (1950). A method for the numerical calculations of hydrodynamics shocks. Journal of Applied Physics, 21:232.

    Article  MathSciNet  Google Scholar 

  • Noh W F (1987). Errors for calculations of strong schocks using an artificial viscosity and an artificial flux. Journal of Computational Physics, 72:78–120.

    Article  Google Scholar 

  • Powell K G, Roe P L, and Myong R S (1995).An upwind scheme for Magnetohy-drodynamics.In GdR SPARCH, editor, Proceedings of the conference. Méthodes numériques pour la MHD.

    Google Scholar 

  • Richtmyer R D and Morton K W (1957). Difference methods for initial-value problems.Interscience Publishers.

    MATH  Google Scholar 

  • Roe P L (1981). Approximate Riemann solver, parameter vectors and difference schemes.Journal of Computational Physics, 43:357–372.

    Article  MathSciNet  Google Scholar 

  • Toro E F (1997). Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag.

    Book  Google Scholar 

  • ZePdovitch Y B and Raizer Y P (1967). Physics of shock waves and High-temperature hydrodynamic phenomena. Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Després, B. (2001). Lagrangian Systems of Conservation Laws and Approximate Riemann Solvers. In: Toro, E.F. (eds) Godunov Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-0663-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0663-8_25

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-5183-2

  • Online ISBN: 978-1-4615-0663-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics