Skip to main content

Volume-of-Fluid Methods for Partial Differential Equations

  • Chapter
Godunov Methods

Abstract

In this paper, we give an overview of a set of methods being developed for solving classical PDE’s in irregular geometries, or in the presence of free boundaries. In this approach, the irregular geometry is represented on a rectangular grid by specifying the intersection of each grid cell with the region on one or the other side of the boundary. This leads to a natural conservative discretization of the solution to the PDE on either side of the boundary. This method has been used for a broad range of free boundary problems, including material interfaces in compressible (Noh and Woodward, 1976; Miller and Puckett, 1996) and incompressible (Hirt and Nichols, 1981; Puckett et al., 1997) flows, shocks (Chern and Colella, 1987; Bell, Colella and Welcome, 1991), and combustion fronts (Bourlioux and Majda, 1995; Hilditch and Colella, 1995; Pilliod and Puckett, 1997). In the case where the surface being represented in this way is an irregular domain boundary, these methods are often referred to as Cartesian grid or embedded boundary methods (Purvis and Burkhalter, 1979; Young et al., 1991). There has been considerable progress in the development of methods for generating the underlying grid description for complex three-dimensional geometries (Aftosmis, Berger and Melton, 1998), which makes this approach particularly attractive for complex engineering problems. These methods have been used in a variety of unsteady fluid dynamics problems, including inviscid compressible flow in three dimensions (Pember et al., 1995a), incompressible flow in two dimensions (Almgren, Bell, Colella and Marthaler, 1997; Calhoun, 1999) and low-Mach number combustion in an axisymmetric burner (Pember et al., 1995b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M. Aftosmis, M. J. Berger and J. Melton, Robust and efficient Cartesian mesh generation for component-based geometry, AIAA J., 36(6):952–960, June, 1998.

    Article  Google Scholar 

  • A. S. Almgren, J. B. Bell, P. Colella and T. Marthaler, A Cartesian mesh method for the incompressible Euler equations in complex geometries, SIAM J. Sci. Comput, 18(5):1289–1309, September, 1997.

    Article  MathSciNet  Google Scholar 

  • J. B. Bell, P. Colella and M. Welcome, A conservative front-tracking for inviscid compressible flow, Proceedings of the Tenth AIAA Computational Fluid Dynamics Conference, 814–822, June, 1991.

    Google Scholar 

  • M. J. Berger and R. J. Leveque, Stable boundary conditions for Cartesian grid calculations, ICASE Report 90–37, May, 1990.

    Book  Google Scholar 

  • A. Bourlioux and A. J. Majda, Theoretical and numerical structure of unstable detonations, Phil. Trans. Roy. Soc. London, 350:29–68, January, 1995.

    MATH  Google Scholar 

  • D. Calhoun, A Cartesian grid method for solving the streamfunction-vorticity equations in irregular geometries, Ph. D. thesis, Department of Applied Mathematics, University of Washington, July, 1999.

    Google Scholar 

  • I.-L. Chern and P. Colella, A conservative front tracking method for hyperbolic conservation laws, Lawrence Livermore National Laboratory Report UCRL-97200, July, 1987.

    Google Scholar 

  • I.-L. Chern, J. Glimm, O. McBryan, B. Plohr, and S. Yaniv, Front tracking for gas dynamics, J. Comput Phys., 62:83–110, 1986.

    Article  MathSciNet  Google Scholar 

  • P. Colella, Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys., 87:171–200, March, 1990.

    Article  MathSciNet  Google Scholar 

  • M. S. Day, P. Colella, M. Lijewski, C. Rendleman and D. L. Marcus Embedded boundary algorithms for solving Poisson’s equation on complex domains Lawrence Berkeley National Laboratory report LBNL-41811, April, 1998.

    Google Scholar 

  • N. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, 1977.

    Book  Google Scholar 

  • J. Helmsen, P. Colella and E.G. Puckett, Non-convex profile evolution in two dimensions using volume of fluids, Lawrence Berkeley National Laboratory report LBNL-40693, July, 1997.

    Google Scholar 

  • J. Hilditch and P. Colella, A front tracking method for compressible flames in one dimension, SIAM J. Sci.. Comput, 16:755–772, 1995.

    Article  MathSciNet  Google Scholar 

  • C. W. Hirt and B. D. Nichols, Volume-of-fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39:201–225, 1981.

    Article  Google Scholar 

  • H. Johansen and P. Colella, A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains, J. Comput. Phys., 147:60–85, December, 1998.

    Article  MathSciNet  Google Scholar 

  • H. S. Johansen, Cartesian grid embedded boundary methods for elliptic and parabolic partial differential equations on irregular domains, Ph. D. thesis, Department of Mechanical Engineering, University of California, Berkeley, December, 1997.

    Google Scholar 

  • G. H. Miller and E. G. Puckett, A high-order Godunov method for multiple condensed phases, J. Comput. Phys., 128(1):134–164, October, 1996.

    Article  Google Scholar 

  • D. Modiano and P. Colella, A higher-order embedded boundary method for time-dependent simulation of hyperbolic conservation laws, Proceedings of the FEDSM 00 - ASME Fluids Engineering Simulation Meeting, June, 2000.

    Google Scholar 

  • W. F. Noh, CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code, Methods in Computational Physics, 3, 1963.

    Google Scholar 

  • W. F. Noh and P. R. Woodward, SLIC (simple line interface calculation), Springer Lecture Notes in Physics, 25:330–339, 1976.

    Article  Google Scholar 

  • S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79:12–49, 1988.

    Article  MathSciNet  Google Scholar 

  • R. B. Pember, A. S. Almgren, W. Y. Crutchfield, L. H. Howell, J. B. Bell, P. Colella and V. E. Beckner, An embedded boundary method for the modeling of unsteady Combustion in an industrial gas-fired furnace, Lawrence Livermore National Laboratory report UCRL-JC-122177, October, 1995.

    Google Scholar 

  • R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield and M. L. Welcome, An adaptive Cartesian grid method for unsteady compressible flow in irregular regions, J. Comput Phys., 120:278–304, 1995.

    Article  MathSciNet  Google Scholar 

  • J. E. Pilliod and E. G. Puckett, An unsplit, second-order accurate Godunov method for tracking deflagrations and detonations, Proceedings of the 21st International Symposium on Shock Waves, 1053–1058, July, 1997.

    Google Scholar 

  • E.G. Puckett, A. S. Almgren, J. B. Bell, D. L. Marcus and W. J. Rider, A higher-order projection method for tracking fluid interfaces in variable density incompressible flows, J. Comput. Phys., 130(2):269–282, January, 1997.

    Article  Google Scholar 

  • J. W. Purvis and J. E. Burkhalter, Prediction of critical Mach number for store configurations, AIAA J., 17:1170–1177, 1979.

    Article  Google Scholar 

  • E. H. Twizell, A. B. Gumel and M. A. Arigu, Second-order, L0-stable methods for the heat equation with time-dependent boundary conditions, Adv. Comput Math., 6(3):333–352, 1996.

    Article  MathSciNet  Google Scholar 

  • D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S. Samani and J. E.Bussoletti, A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics, J. Comput. Phys.,92:1–66, January, 1991.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Colella, P. (2001). Volume-of-Fluid Methods for Partial Differential Equations. In: Toro, E.F. (eds) Godunov Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-0663-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0663-8_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-5183-2

  • Online ISBN: 978-1-4615-0663-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics