The Antimicrobial and Immunomodulating Actions of Milk Leukocytes

  • Gerd Riedel-Caspari
Part of the Advances in Nutritional Research book series (ANUR, volume 10)


The ability of highly developed organisms to defend themselves against invading microorganisms depends on recognizing and destroying dangerous substances such as microbes and their toxins. Recognition and destruction are tasks of the immune system, primarily of the leukocytes. Subpopulations of leukocytes variously release antimicrobial substances such as immunoglobulins, lysozyme, complement factors and reactive oxygen metabolites into the cellular environment upon exposure to an antigenic stimulus, and they also ingest foreign materials or secrete cytokines which regulate the immune response. During lactation a mother can pass immunogenic substances to her offspring through her mammary secretions. These compounds in colostrum and milk are an important, if not decisive, part of the adoptive transfer of immunity from mother to offspring in many species. Most scientific investigations into the adoptive transfer of immunity through milk have focused on immunoglobulins rather than on leukocytes. However, adoptive transfer of the cells in milk also appears to occur. It is important to explain how immunocompetent maternal leukocytes can modulate immune responses in the newborn without recognizing and destroying the neonate’s leukocytes and tissues as nonself elements that bear different, paternally-derived major histocompatibility complex (MHC) antigens. Conversely, why don’t the immunocompetent leukocytes of the newborn attack and eliminate milk-derived cells that bear a maternal MHC? An important purpose of this chapter is to address these intriguing questions to the extent that current data permit. Another important question is whether mammary leukocytes have any protective role or whether the milk is simply a convenient route of excretion for these cells. A full understand-ing of the anti-microbial action of mammary gland leukocytes for all mammalian species must await more exhaustive study.


Mammary Gland Adoptive Transfer Somatic Cell Count Immunomodulating Action Dark Agouti 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allardyce, R.A., Shearman, D.J.C., McClelland, D.B.L., Marwick, K., Simpson, A.J., Laidlaw, R.B. 1974. Appearance of specific colostrum antibodies alter clinical infection with Salmonella typhimurium.Br. Med. J.3:3079.CrossRefGoogle Scholar
  2. Beasley, R.P., Stevens, C.E., Shiao, I.S., and Meng, H.C. 1975. Evidence against breast-feeding as a mechanism of vertical transmission of hepatitis B.Lancet2:740.CrossRefGoogle Scholar
  3. Beer, A.E., Billingham, R.E., Yang, S.L. 1972. Maternally induced transplantation immunity, tolerance and runt disease in rats.J. Exp. Med.135:808.CrossRefGoogle Scholar
  4. Beer, A.E. and Billingham, R.E. 1973. Maternally acquired runt disease.Science179:240CrossRefGoogle Scholar
  5. Beer, A.E., Stott, J.R., Billingham, R.E. 1975. Histoimcompatibility and maternal immunological status as determinants of fetoplacental weight and litter size in rodents.J. Exp. Med.142:180.CrossRefGoogle Scholar
  6. Bertotto, A., Gerli, R., Fabietti, G., Crupi, S., Arcangeli, C., Scolise, E, Vaccaro, R. 1990. Human breast milk T lymphocytes display the phenotype and functional characteristics of memory T cells.Eur. J. Immunol.20:1877.CrossRefGoogle Scholar
  7. Bienenstock, J., McDermott, M., Befits, D., O’Neill, M. 1978. A common mucosal immunologic system involving the bronchus, breast and bowel.Adv. Exp. Med. Biol.107:53.CrossRefGoogle Scholar
  8. Bush, J.F. and Beer, A.E. 1979. Analysis of complement receptors on B-lymphocytes in human milk.Am. J. Obstet. Gynecol133:708.Google Scholar
  9. Campbell, B., Porter, R.M., Petersen, W.M. 1950. Plasmacytosis of the bovine udder during colostrum secretion and experimental cessation of milking.Nature166:913.CrossRefGoogle Scholar
  10. Concha, C., Holmberg, O., Morein, B. 1978a. Proportion of B- and T-lymphocytes in normal bovine milk. J. Dairy Res.45:287.CrossRefGoogle Scholar
  11. Concha, C., Holmberg, O., Morein, B. 1978b. Characterization of bovine mammary lymphocytes at different periods of lactation.Adv. Exp. Med. Biol.137:806.Google Scholar
  12. Concha, C., Holmberg, O., Morein, B. 1980. Characterization and response to mitogens of mammary lymphocytes from the bovine dry period secretion.J. Dairy Res.47:305.CrossRefGoogle Scholar
  13. Corlett, N.J., Peters, R.R., Paape, M.J., Schultze, W.D. 1984. Effect of intramary device on new infection rate, milk yield, and somatic cell counts in Maryland dairy herds.J. Dairy Sci.67:2571.CrossRefGoogle Scholar
  14. Crago, S.S., Prince, S.J., Pretlow, G.T., McGhee, J.R., Mestecky, J. 1979 Human colostral cells. I. Separation and characterization.Clin. Exp. Immunol.38:585.Google Scholar
  15. Csorba, S., Nagy, B., Varga, S., Marodi, L., Jezerniczky, J. 1979. Leukocyte function in colostrum.Mschr. Kinderheilk.127:557.Google Scholar
  16. Deem, S.L., Norval, R.A., Donachie, P.L., Mahan, S.M. 1996. Demonstration of vertical transmission of Cowdria ruminantum, the causative agent of heartwater, from cows to their calves.Vet. Parasitol.61:119.CrossRefGoogle Scholar
  17. Desai, R.G. and Creger, W.P. 1963. Maternal-fetal passage of leucocytes and platelets in man.Blood21:665.Google Scholar
  18. Diaz-Jouanen, E. and Williams, R.C., Jr. 1974. T and B lymphocytes in human colostrum.Clin. Immunol. Immunopathol.3:248.CrossRefGoogle Scholar
  19. Duhamel, G.E. 1986. Characterization of bovine mammary lymphocytes and their effects on neonatal calf immunity.Diss. Abstr. Intern. B47:1477.Google Scholar
  20. Duhamel, D.E., Bernocco, D., Davis, W.C., Osburn, B.I. 1987. Distribution of T- and B-lymphocytes in mammary dry secretions, colostrum and blood of adult dairy cattle.Vet. Immunol. Immunopathol.14:101.CrossRefGoogle Scholar
  21. Evans, P.A., Newby, T.J., Stokes, C.R., Boume, F.J. 1982. A study of cells in the mammary secretions of sows.Vet. Immunol. Immunopathol.3:515.CrossRefGoogle Scholar
  22. Emödi, G. and Just, M. 1974. Interferon production by lymphocytes in humanmilk. Scand. J. Immunol.3:157.CrossRefGoogle Scholar
  23. Field, E.J. and Caspary, E.A. 1971. Is maternal lymphocyte sensitization passed to the child?Lancet2:337.CrossRefGoogle Scholar
  24. Goldblum, R.M., Ahlstedt, S., Carlsson, B., Hanson, L.A., Jodal, U., Lidin-Janson, G., Sohl-Akerlund, A. 1975. Antibody-forming cells in human colostrum alter oral immunization.Nature257:297.CrossRefGoogle Scholar
  25. Guidry, A.J., Ost, M., Mather, I.H., Shainline, W.E., and Weinland, B.T. 1983. Sequential response of milk leukocytes, albumin, immunoglobulins, monovalent ions, citrate, and lactose in cows given infusion of Escherichia coli endotoxin into the mammary gland.Am. J. Vet. Res.44:2262.Google Scholar
  26. Hale, M.L., Hanna, E.E., Hansen, C.T. 1976. Nude mice from homozygous nude parents show smalter PFC responses to sheep erythrocytes than nude mice from heterozygous mothers.Nature260:44.CrossRefGoogle Scholar
  27. Hallén Sandgren, C., Nordling, K., Björk, I. 1991. Isolation and phagocytic properties of neutrophils and other phagocytes from nonmastitic bovine milk.J. Dairy Sci.74:2965.CrossRefGoogle Scholar
  28. Hallün Sandgren, C., Larsson, I., Persson, K. 1992. Bovine neutrophils recruited by endotoxin to a teat cistern continuously produce oxygen radicals and show increased phagocytosis and extracellular chemiluminescence.Inflammation16:117.CrossRefGoogle Scholar
  29. Harmon, R.J. and Heald, C.W. 1982. Migration of polymorphonuclear leukocytes into the bovine mammary gland during experimentally induced Staphylococcus aureus mastitis.Am. J. Vet. Res.43:992.Google Scholar
  30. Harp, J.A. and Moon, H.W. 1987. Lymphocyte localization in lymph nodes of pubescent, prepartum, and postpatum sheep.Vet. Immunol. Immunopathol.15:297.CrossRefGoogle Scholar
  31. Harp, J.A., Runnels, P.L., Pesch, B.A. 1988. Patterns of localization by mammary and mesenteric lymph node lymphocytes.Vet. Immunol. Immunopathol.20:31.CrossRefGoogle Scholar
  32. Head, J.R., Beer, E.A., Billingham, R.E. 1977. Significance of the cellular component of the maternal immunologic endowment in milk.Transplant. Proc.9:1465.Google Scholar
  33. Head, J.R. and Beer, E.A. 1979. In vivo and in vitro assessment of the immunologic role of leukocytic cells in milk, in:Immunology of Breast Milk(P.L. Ogra and D. Dayton, eds.), pp. 207–225, Raven Press, New York.Google Scholar
  34. Heyermann, H and Senft, B. 1985. Der Einfluss autologer Milch-und Blutseren auf die Phagozytoseaktivität neutrophiler Granulozyten des Blutes und der Milch von Kühen.Zbl. Vet. Med. B32:488.CrossRefGoogle Scholar
  35. Ho, F.C. and Lawton, J.W. 1978. Human colostral cells: phagocytosis and kiting of E. coli and C. albicans.J. Pediatr.93:910.Google Scholar
  36. Ho, F.C.S., Wong, R.L.C., Lawton, J.W.M. 1979. Human colostral and breast milk cells.Acta Paediatr. Scand.68:389.CrossRefGoogle Scholar
  37. Jain, N., Mathur, N.B., Sharma, V.K., Dwarkadas, A.M. 1991. Cellular composition indicating lymphocyte subsets in preterm and full term human colostrum and milk.Acta Paediatr. Scand.80:395.CrossRefGoogle Scholar
  38. Jensen, D.L. and Eberhart, R.J. 1975. Macresophag in bovine milk.Am J. Vet. Res.36:619.Google Scholar
  39. Jensen, D.L. and Eberhart, R.J.1981.Total and differential cell counts in secretion of the non lactating bovine mammary gland.Am. J. Vet. Res.42:743.Google Scholar
  40. Kmetz, M., Dunne, H.W., Schultz, R.D. 1970. Leukocytes as carriers in the transmission of bovine leukaemia: invasion of the digestive tract of the newborn by ingested, cultured, leukocytes.Am. J. Vet. Res.31:637.Google Scholar
  41. Kohl, S., Maloy, M.M., Pickering, L.K., Morriss, E, Adcock, E.W., and Walters, D.L. 1978a. Human colostral cytotoxcicity. I. Antibodydependent cellular cytotoxicity against Herpes simplex viralinfected cells mediated by colostral cells.J. Clin. Lab. Immunol.1:221.Google Scholar
  42. Kohl, S., Shaban, S.S., Starr, S.E., Wood, P.A., Nahmias, A.J. 1978b. Human neonatal and maternal monocyte-macrophage and lymphocyte mediated antibody-dependent cytotoxicity to cells infected with Herpes simplex.J. Pediatr.93:2060.Google Scholar
  43. Kohl, S., Pickering, L.K., Cleary, T.G., Steinmetz, K.D., Loo, L.S. 1980. Human colostral cytotoxicity. II. Relative defects in colostral leukocyte cytotoxicity and inhibition of peripheral blood leukocyte cytotoxicity by colostrum.J. Infect. Dis.142:884.CrossRefGoogle Scholar
  44. Lamm, M E, Weisz-Carrington, P., Roux, M.E., McWilliams, M., Phillips-Quagliata, J.M.1978. Development of the IgA system in the mammary gland.Adv. Exp. Med. Biol.107:35.CrossRefGoogle Scholar
  45. Lascelles, A.K., Grimer, B.W., Coombs, R.R.A. 1969. Some properties of human colostral cells.Austr. J. Exp. Biol. Med. Sci.47:349.CrossRefGoogle Scholar
  46. Laven, G.T., Crago, S.S., Kutteh, H.W., Mestecky, J. 1981. Hemolytic plaque formation by cellular and noncellular elements of human colostrum.J. Immunol.127:1967.Google Scholar
  47. Lawton, J.W.M., Shortridge, K.F., Wong, R.L.C., Ng, M.H. 1979. Interferon synthesis by human colostral leukocytes.Arch. Dis. Child.54:127.CrossRefGoogle Scholar
  48. Lee, C.S., McDowell, G.H., Lascelles, A.K. 1969. The importance of macrophages in the removal of fat from the involution mammary gland.Res. Vet. Sci.10:34.Google Scholar
  49. Lee, C.S., Wooding, P., Kemp, P. 1980. Identification, properties, and differential counts of cell populations using electron microscopy of dry cows secretions, colostrum and milk from normal cows.J. Dairy Res.47:39.CrossRefGoogle Scholar
  50. Lee, C.S. and Outteridge, P.M. 1981. Leukocytes of sheep colostrum, milk and involution secretion, with particular reference to ultrastructure and lymphocyte sub-populations.J. Dairy Res.48:225.CrossRefGoogle Scholar
  51. Lee, C.S., McCauly, I., Hartmann, P.E. 1983. Light and electron microscopy of cells in pig colostrum, milk and involution secretion.Acta Anat. (Basel)116:126.CrossRefGoogle Scholar
  52. Loke, Y.W. 1978. Immunology and Immunopathology of the Human Foetal-Maternal Interaction. pp. 88–89.Elsevier/North-Holland Biomedical Press, AmsterdanNew York, Oxford.Google Scholar
  53. Manning, L.S. and Parmely, M.J. 1980. Cellular determinants of mammary cell-mediated immunity in the rat. 1. The migration of radioisotopically labeled T lymphocytes.J. Immunol.125:2508.Google Scholar
  54. Mattila, T. and Frost, A.J. 1989. Induction by endotoxin of the inflammatory response in the lactating and dry bovine mammary gland.Res. Vet. Sci.46:238.Google Scholar
  55. McDermott, M.R. and Bienenstock, J. 1979. Evidence for a common mucosal immunologic system. 1. Migration of B immunoblasts into intestinal, respiratory, and genital tissues.J. Immunol.122:1892.Google Scholar
  56. Meggs, P.D. and Beer, A.E. 1979. In vitro stimulation of human colostral lymphocytes by cytomegalovirus.Am. J. Obstet. Gynecol.133:703.Google Scholar
  57. Meriläinen, V., Mayra, A., Korhonen, H., Antila, M.,Uusi-Rauva, A. 1979. Cells in bovine colostrum and properties of lymphocyte population.Meijeriteellinen Aikakausirja37:45.Google Scholar
  58. Mielke, E. and Koblenz, C. 1980a. Zur Einteilung und Differenzierung der Milchzellen eutergesunder und euterkranker Kühe.Mh. Vet. med.35:367.Google Scholar
  59. Mielke, E. and Koblenz, C. 1980b. Struktur und Funktion der Makrophagen der Kuhmilch. Mh.Vet. med.35:376.Google Scholar
  60. Mielke, E. and Koblenz, C. 1981. Herkunft und Verhalten der Makrophagen der Milch eutergesunder und euterkranker Kühe.Arch. Exp. Vet. med.35:1.Google Scholar
  61. Miller, S.C. 1981. Failure to demonstrate morphologically the presence of colostral or milk cells in the wall of the gastrointestinal tract of the suckling neonatal mouse.J. Reprod. Imunol.3:187.CrossRefGoogle Scholar
  62. Mitsuda, T., Yokota, S., Mori, T., Ibe, M., Ookawa, N., Shimizu, H., Aikara, Y., Yoshida, N.,Kosuge, K., Matsuayma, S. 1989. Demonstration of mother-to-infant transmission of hepatitis B virus by means of polymerase chain reaction.Lancet2 (8668):886.CrossRefGoogle Scholar
  63. Mohr, J.A., Leu, R., Mabry, W. 1970. Colostral leukocytes.J. Surg. Oncol.2:163.CrossRefGoogle Scholar
  64. Mohr, J.A. 1973. The possible induction and/or acquisition of cellular hypersensitivity associated with ingestion of colostrum.J. Pediatr.82:1062.CrossRefGoogle Scholar
  65. Moro, I., Crago, S.S., Mestecky, J. 1983. Localization of IgA and IgM in human colostral elements using electron microscopy.J. Clin. Immunol.3:382.CrossRefGoogle Scholar
  66. Moro, I., Abo, T., Crago, S.S., Komiyama, U., Mestecky, J. 1985. Natural killer cells in human colostrum.Cell. Immunol.93:467.CrossRefGoogle Scholar
  67. Murillo, G.J. and Goldman, A.S. 1970. The cells of human colostrum. II. Synthesis of IgA and (31c.Pediatr. Res.4:71.CrossRefGoogle Scholar
  68. Mushtaha, A.A., Schmalstieg, F.C., Hughes, T.K., Rajaraman, S., Rudloff, H.E., Goldman, A.S. 1989. Chemokinetic agents for monocytes in human milk: possible role of tumor necrosis factor-alpha.Pediatr. Res.25:629.CrossRefGoogle Scholar
  69. Newby, T.J. and Bourne, J. 1977. The nature of the local immune system of the bovine mammary gland.J. Immunol.118:461.Google Scholar
  70. Nickerson, S.C. and Pankey, J.W. 1984. Neutrophil migration through teat end tissues of bovine mammary quarters experimentally challenged with Staphylococcus aureus.J. Dairy Sci.67:826.CrossRefGoogle Scholar
  71. Nonnecke, B.J. and Kehrli, M.E., Jr. 1985. Isolation of mononuclear cells from bovine milk by continuous-flow and density gradient centrifugation: response of cells to mitogens.Am. J. Vet. Res.46:1259.Google Scholar
  72. Östensson, K. 1993. Trafficing of leukocytes and immunoglobulin isotypes in the bovine udder. Dissertation University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
  73. Ogra, S.S. and Ogra, P.L. 1978. Immunologie aspects of human colostrum and milk. II. Characteristics of lymphocyte reactivity and distribution of E-rosette forming cells at different times alter the onset of lactation.J. Pediatr.29:550.Google Scholar
  74. Ogra, S.S., Weintraub, D., Ogra, P.L. 1978. Immunologie aspects of human colostrum and milk: Interaction with the intestinal immunity of the neonate.Adv. Exp. Med. Biol.107:957.Google Scholar
  75. Paape, M.J., Guidry, A.J., Kirk, T.S., Dold, D.J. 1975. Measurement of phagocytosis of P-labeled Staphylococcus aureus by bovine leukocytes: lysostaphin digestion and inhibitory effect of cream.Am. J. Vet. Res.36:1737.Google Scholar
  76. Paape, M.J., Schultze, W.D., Corlett, N.J., Weinland, B.T. 1988. Effect of abraded intrammary device on outcome in lactating cows after challenge exposure with Streptocossus uberis.Am. J. Vet. Res.49:790.Google Scholar
  77. Parmely, M.J., Beer, A.J., Billingham, R.E. 1976. In vitro studies on the T-lymphocyte population of human milk.J. Exp. Med.144:358.CrossRefGoogle Scholar
  78. Parmely, M.J. and Beer, A.E. 1977. Colostral cell-mediated immunity and the concept of a common secretory immune system.J. Dairy Sci.60:655.CrossRefGoogle Scholar
  79. Parmely, M.J. and Williams, S.B. 1979. Selective expression of immunocompetence in human colostrum: preliminary evidence for the control of cytotoxic T-lymphocytes including those specific for paternal alloantigens, in:Immunology of Breast Milk(PL. Ogra and D.H. Dayton, eds.), pp. 173–183, Raven Press, New York.Google Scholar
  80. Peer, L.A. 1958. Behaviour of skin grafts exchanged between parents and offsprings.Ann. N.Y. Acad. Sci.73:584.CrossRefGoogle Scholar
  81. Persson, A., PedersenMorner, A., Kuhl, W. 1996. A long-term study of the health status and performance of sows on different feed allowances during late pregnanc. II. The Total cell content and its percentage of polymorphonuclear leucocytes in pathogen-free colostrum and milk collected from clinically healthy sows.Acta Vet. Scand.37:279.Google Scholar
  82. Pickering, L.K., Cleary, T.G., Kohl, S., Geiz, S. 1980. Polymorphonuclear leukocytes of human colostrum. 1. Oxidative metabolism and kinetics of killing of radiolabeled Staphylococcus aureus.J. Infect. Dis.142:685.CrossRefGoogle Scholar
  83. Pitt, J., Barlow, B., Heird, W.C. 1977. Protection against experimental necrotizing enterocolitis by maternal milk. I. Route of milk leukocytes.Pediatr. Res.11:906.CrossRefGoogle Scholar
  84. Pitt, J. 1979. The milk mononuclear phagocyte.Pediatr.64:745.Google Scholar
  85. Pittard, W.B., Polmar, S.H., Fanaroff, A. 1977. The breast milk macrophage: A potential vehicle for immunoglobulin transport.Pediatr. Res.11:492.CrossRefGoogle Scholar
  86. Richie, E.R., Steinmetz, K.D., Meistrich, M.L., Ramirez, I., Hilliard, J.K. 1980. T-lymphocytes in colostrum and peripheral blood differ in their capacity to form thermostable E-rosettes.J. Immunol.125:2344.Google Scholar
  87. Riedel-Caspari, G. 1993. The influence of colostral leukocytes on the course of an experimental Escherichia coli infection and serum antibodies in neonatal calves.Vet. Immunol. Immunopathol.35:275.CrossRefGoogle Scholar
  88. Riedel-Caspari, G. and Schmidt, E-W. 1991a. The influence of colostral leukocytes on the immune system of the neonatal calf. II. Effects on passive and active immunization.Dtsch. tierärztl. Wschr.98:190.Google Scholar
  89. Riedel-Caspari, G., Schmidt, F.W., Marquardt, J. 1991. The influence of colostral leukocytes on the immune system of the neonatal calf. IV. Effects on bactericidity, complement and interferon.Dtsch. tierärztl. Wschr.98:395.Google Scholar
  90. Robinson, J.M., Harvey, B.A., Soothil, J.F. 1978. Phagocytosis and killing of bacteria and yeast by human milk cells alter opsonization in aqueous phase milk.Br. Med. J.1:1443.CrossRefGoogle Scholar
  91. Roux, M.E., McWilliams, M., Phillips-Quagliata, J.M., Weisz-Carrington, P., and Lamm, M.E. 1977. Origin of IgA secreting plasma cells in the mammary gland.J. Exp. Med.146:1311.CrossRefGoogle Scholar
  92. Russel, M.W. and Reiter, D. 1975. Phagocytic definciency of bovine milk leukocytes: An effect of casein.J. Reticuloendothel. Soc.18:1.Google Scholar
  93. Russell, M.W., Brooker, B.E., Reiter, B. 1976. Inhibition of the bactericidal activity of bovine polymorphonuclear leukocytes and related systems by casein.Res. Vet. Sci.20:30.Google Scholar
  94. Salmon, H. and Delouis, C. 1982. Cinetique de sous-populations lymphocytaires et des pplasmocytes dans la mammelle de truie primipaire en relation avec la gestation et la lactation.Ann. Rech. Vet.13:42.Google Scholar
  95. Salmon, H. 1987. The intestinal and mammary immune system in pigs.Vet. Immunol. Immunopathol.17:367.CrossRefGoogle Scholar
  96. Schalm, O.W. 1977. Pathologic changes in the milk and the udder of cows with mastitis.J. Am. Vet. Med. Assoc.170:1137.Google Scholar
  97. Schalm, O.W., Lasmanis, J., Jain, N.C. 1976. Conversion of chronic staphylococcal mastitis to acute gangrenous mastitis after neutropenia in blood and bone marrow produced by an equine anti-bovine leukocyte serum.Am. J. Vet. Res.37:885.Google Scholar
  98. Schlesinger, J.J. and Covelli, H.D. 1977. Evidence for the transmission of lymphocyte responses to tuberculin by breast-feeding.Lancet2:529.CrossRefGoogle Scholar
  99. Schollenberger, A., Degorski, A., Frymus, T., Schollenberger, A. 1986a. Cells of sow mammary secretions. I. Morphology and differential counts duringlactation. J. Vet. Med. Assoc.33:31.CrossRefGoogle Scholar
  100. Schollenberger, A., Degorski, A., Frymus, T., Schollenberger, A. 1986c. Cells of sow mammary secretions. III. Some properties of phagocytic cells.J. Vet. Med. Assoc.33:353.CrossRefGoogle Scholar
  101. Schore, C.E., Osburn, B.I., Jasper, D.E., Tyler, D.E. 1981. B- and T-lymphocytes in the bovine mammary gland: Rosette formation and mitogen response.Vet. Imunol. Imunopathol.2:561.CrossRefGoogle Scholar
  102. Schultze, W.D. and Pappe, M.J. 1984. Effect on outcome of intramammary challenge with Staphylococcus aureus of somatic cell concentration and presence of an intramammary device.Am. J. Vet. Res.45:420.Google Scholar
  103. Scicchitano, R., Husband, A.J., Clancy, R.L. 1984. Contribution of intraperitoneal immunization to the local immmune response in the respiratory tract of sheep.Immunol.53:375.Google Scholar
  104. Seelig, L.L. 1980. Dynamics of leukocytes in rat mammary epithelium during pregnancy and lactation.Biol. Reprod.22:1211.Google Scholar
  105. Seelig, L.L. and Billingham, R.E. 1981. Capacity of “transplanted” lymphocytes to transverse the intestinal epithelium of adult rats.Transpl.32:308.CrossRefGoogle Scholar
  106. Sheldrake, R.F. and Husband, A.J. 1985. Intestinal uptake of intact maternal lymphocytes by neonatal rats and lambs.Res. Vet. Sci.39:10.Google Scholar
  107. Sheldrake, R.F., Husband, A.J., Watson, D.L. 1985a. Specific antibody-containing cells in the mammary gland of non-lactating sheep following intraperitoneal and intramammary immunization.Res. Vet. Sci.39:312.Google Scholar
  108. Sheldrake, R.F., Husband, A.J., Watson, D.L., Cripps, A.W. 1985b. The effect of intraperitoneal and intramammary immunization of sheep on the number of antibody-containing cells in the mammary gland and the antibody titers in blood serum and mammary secretions.Immunol.56:605.Google Scholar
  109. Silvers, W.K. and Poole, T.W. 1975. The influence of foster nursing on the survival and immunologic competence of mice and rats.J. Immunol.115:1117.Google Scholar
  110. Smith, C.W. and Goldman, A.S. 1968. The cells of human colostrum. I. In vitro studies of morphology and functions.Pediatr. Res.2:103.CrossRefGoogle Scholar
  111. Smith, C.W. and Goldman, A S. 1970. Interactions of leukocytes and macrophages from human colostrum: characteristics of the interacting lymphocyte.J. Reticuloendothel. Soc.8:91.Google Scholar
  112. Smith, C.W., Goldman, A.S., Yates, R.D. 1971. Interaction of lymphocytes and macrophages from human colostrum.Exp. Cell Res. 69:409.CrossRefGoogle Scholar
  113. Smith, J.W. and Schultz, R.D. 1977. Mitogen and antigen-responsive milk lymphocytes.Cell. Immunol.29:165.CrossRefGoogle Scholar
  114. Targowski, S.P. and Niemialtowski, M. 1986. Inhibition of lacteal leukocyte phagocytosis by colostrum, non-lactating secretion, and mastitic milk.Am. J. Vet. Res.47:1940.Google Scholar
  115. Tuboly, S., Bernath, S., Glavits, R., Medveczky, I. 1988. Intestinal absorption of colostral lymphoid cells in new-born piglets.Vet. Immunol. Immunopathol.20:75.CrossRefGoogle Scholar
  116. Tuboly, S., Bernath, S., Glavits, R., Kovacs, A., Megyeri, Z. 1995. Intestinal absorption of colostral lymphocytes in new-born lambs and their role in the development of the immune status.Acta Vet. Hung.43:105.Google Scholar
  117. Uphoff, D.E. 1977. Runt disease in suckling hybridmice: Substrain differences and litter seriation.Transplant. Proc.9:1455.Google Scholar
  118. Weaver, E.A., Goldblum, R.M., Davis, C.P., Goldman, A.S. 1981. Enhanced immuno-globulin A release from human colostral cells during phagocytosis.Infec. Immun.34:498.Google Scholar
  119. Williams, P.P. 1993. Immunomodulating effects of intestinal absorbed maternal colostral leukocytes by neonatal pigs.Can. J. Vet. Res.57:1.Google Scholar
  120. Weisz-Carrington, P., Roux, M.E., Phillips-Quagliata, J.M., Lamm, M.E. 1978. Hormonal induction of the secretory immune system in the mammary gland.Proc. Nat. Acad. Sci.75:2928.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Gerd Riedel-Caspari
    • 1
  1. 1.PlantaVetBad WaldseeGermany

Personalised recommendations