Skip to main content

Hierarchical Structure of Bone and Micro-Computed Tomography

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 496))

Abstract

More than 130 years have passed since early investigators described the coincident relationship between the orientation of trabecular bone and the presumed direction of principal stresses engendered during habitual activity.1-4Stimulated by these early perceptions, current investigators continue to explore structure function relationships for bone as a means to understand the basis for its resistance to failure or its strategy for adapting to functional demands while remaining a participant in mineral homeostasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Wolff, Das Gaesetz der Transformation der Knochen (Hirschwald, Berlin, 1892).

    Google Scholar 

  2. G. H. von Meyer, Die Architektur der Spongiosa. Archiv. Anat. Physiol. Wissenhaftliche Med. (Reichert und Dubios-Reymonds Archiv) 34,615–628 (1867).

    Google Scholar 

  3. W. Roux, Gesemelte Abhandlungen uber der Entwicklungsmechanik der Organisman (W. Engelmann, Leipzig, 1895).

    Book  Google Scholar 

  4. C. Culmann, Die Graphische Statik, 1. Auflage. (Mayer und Zeller, Zurich, 1866).

    Google Scholar 

  5. P. Brinckmann, M. Biggemann, and D. Hilweg, Prediction of the compressive strength of human lumbar vertebrae, Spine 14,606–610 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. S. A. V. Eriksson, B. O. Isberg, and J. U. Lindgren, Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography, Calcif Tissue Int 44,243–250 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. A. Vesterby, Li. Mosekilde, H. J. G. Gundersen, F. Melsen, Le. Mosekilde, K. Holme, and S. Sorensen, Biologically meaningful determinants of the in vitro strength of lumbar vertebrae, Bone 12,219–224 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. V. Gilsanz, M. L. Loro, T. F. Roe, J. Sayre, R. Gilsanz, and E. E. Schulz, Vertebral size in elderly women with osteoporosis, J. Clin Invest 95,2332–2337 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. J. C. Lotz and W. C. Hays, The use of quantitative computed tomography to estimate risk of fracture of the hip from falls, J. Bone Joint Surg 72-A,689–700 (1990).

    PubMed  CAS  Google Scholar 

  10. T. M. Boyce and R. D. Bloebaum, Cortical aging differences and fracture implications for the human femoral neck, Bone 14,769–778 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. S. D. Rockoff, E. Sweet, and J. Bleustein, The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae, Calcif Tissue Res 3,163–175 (1969).

    Article  PubMed  CAS  Google Scholar 

  12. Li. Mosekilde and Le. Mosekilde, Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals, Bone 11,67–73 (1986).

    Article  Google Scholar 

  13. C-C. Gluer, S. R. Cummings, A. Pressman, J. Li, K. Gluer, K. G. Faulkner, S. Grampp, and H. K. Genant, Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. JBnne Miner Res 9(5),671–7 (1994).

    Article  CAS  Google Scholar 

  14. T. Sandor, D. Felsenberg, and E. Brown, Comments on the hypotheses underlying fracture risk assessment in osteoporosis as proposed by the world health organization. Calcif Tissue Int 64,267–270 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. D. A. McCubbrey, D. D. Cody, E. L. Peterson, J. L. Kuhn, M. J. Flynn, and S. A. Goldstein, Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density. J Biomech 28,891–899 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. D. D. Cody, S. A. Goldstein, M. J. Flynn, and E. B. Brown, Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load, Spine 16,146–154 (1991).

    PubMed  CAS  Google Scholar 

  17. J. Bonadio, K. J. Jepsen, M. K. Mansoura, R. Jaenisch, J. L. Kuhn, and S. A. Goldstein, A marine skeletal adaptation that significantly increases cortical bone mechanical properties, J Clin Invest 92,1697–1705 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. K. J. Jepsen, M. B. Schaffler, J. L. Kuhn, R. W. Goulet, J. Bonadio, and S. A. Goldstein, Type I collagen mutation alters the strength and fatigue behavior of mov13 cortical tissue JBiomech 30,1141–1147 (1997).

    CAS  Google Scholar 

  19. A. L. Lerner, J. L. Kuhn, and S. J. Hollister, Are regional variations in bone growth related to mechanical stress and strain parameters? JBiomech 31(4),327–35 (1998).

    Article  CAS  Google Scholar 

  20. B. van Rietbergen, F. Eckstein, B. Koller, R. Huiskes, F. Baaijens, and P. Ruesegger, Trabecular bone tissue strains in the healthy and osteoporotic human femur. 46th Annual Meeting, Orthopaedic Research Society, (Orlando, March 12–15, 2000).

    Google Scholar 

  21. J. D. Currey, The Mechanical Adaptations of Bones, Princeton, NJ: Princeton University Press, 1984.

    Google Scholar 

  22. R. B. Martin, D. B. Burr, and N. A. Sharkey, Skeletal Tissue Mechanics, (Springer-Verlag, Inc., New York, NY, 1998).

    Google Scholar 

  23. W. S. Jee, “The Skeletal Tissues.” In Cell and Tissue Biology: A Textbook of Histology, edited by Leon Weiss (Urban & Schwarzenberg, Baltimore, MD, 1988).

    Google Scholar 

  24. D. R. Carter and D. M. Spengler. Mechanical properties and composition of cortical bone. Clin Orthop 135:192–217 (1978).

    PubMed  Google Scholar 

  25. Y. H. An “Mechanical properties of bone,” in Mechanical Testing of Bone and the Bone-Implant Interface, edited by Yuehuei H. An and Robert A. Draughn (CRC Press, Boca Raton. 2000).

    Google Scholar 

  26. R. W. Goulet, S. A. Goldstein, M. J. Ciarelli, J. L. Kuhn, M. B. Brown, and L. A. Feldkamp, The relationship between the structural and orthogonal compressive properties of trabecular bone. JBio-meth 27,375–89 (1994).

    CAS  Google Scholar 

  27. M. Kleerekoper, L. A. Feldkamp, and S. A. Goldstein, The effect of aging on the skeleton -- implications for changes in tolerance. Symposium on Biomechanics and Medical Aspects of Lower Limb Injuries; 1986 (SanDiego, October 29–30), and Society of Automobile Engineers (Warrendale, PA 1986).

    Google Scholar 

  28. A. M. Parfitt, Trabecular bone architecture in the pathogenesis and prevention of fracture. Am J Med 82(1B),68–72 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. J. Kabel, A. Odgaard, B. van Rietbergen, and R. Huiskes, Connectivity and the elastic properties of cancellous bone, Bone 24(2),115–20 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. A. Odgaard, Three-dimensional methods for quantification of cancellous bone architecture. Bone 20,315–328 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. Q. Kang, Y. H. An, H. F. Butehorn III, and R. J. Friedman, Morphological and mechanical study on the effects of experimentally induced inflammatory knee arthritis in rabbit long bones, J. Mater Sci Mater Med 9,463–473 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. S. A. Goldstein, J. L. Ku, S. Hollister, R. Goulet, F. W. Champlain, and L. S. Matthews, Experimentally controlled trabecular bone remodeling: effects of applied stress. Transactions of the 33rd Annual Meeting of the Orthopaedic Research Society (San Francisco, January 19–22, 1987).

    Google Scholar 

  33. S. A. Goldstein, R. Goulet, and D. McCubbrey, Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int 53,5127–5133 (1993).

    Article  Google Scholar 

  34. R. W. E. Mellish, M. W. Ferguson-Pell, G. V. B. Cochran, R. Lindsay, and D. W. Dempster, A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra, J Bone Min Res 6,689–96 (1991).

    Article  CAS  Google Scholar 

  35. L. A. Feldkamp, L. D. Davis,and J. W. Kress, Practical cone-beam algorithm J Opt Soc A Am A1,612–619 (1984).

    Google Scholar 

  36. M. J. Ciarelli, S. A. Goldstein, D. Dickie, J. L. Ku, M. Kapper, J. Stanley, M. J. Flynn, and L. S. Matthews, Experimental determination of the ortogonal mechanical properties, density, and distribution of human trabecular bone from the major metaphyseal regions utilizing materials testing and computed tomography. Transactions of the 32nd Annual Meeting of the Orthopaedic Research Society New Orleans (February 1720, 1986) and Orthopaedic Research Society, Park Ridge, IL, (1986).

    Google Scholar 

  37. S. A. Goldstein, The mechanical properties of trabecular bone: dependence on anatomic location and function. JBiomech 20(11–12),1055–61 (1987).

    Article  CAS  Google Scholar 

  38. J. L. Kuhn, R. W. Goulet, S. A. Goldstein, and L. A. Feldkamp, A study of the ariation of trabecular architectures in small volumes of bone using a microcomputed tomography system. Proceedings of the American Society of Biomechanics 12th Annual Meeting (Urbana, IL, September 28–30, 1988).

    Google Scholar 

  39. M. W. Layton, S. A. Goldstein, R. W. Goulet, L. A. Feldkamp, and G. G. Bole, Evaluation of subchondral bone architecture in experimental osteoarthrosis by microscopic computerized axial tomography. Transactions of the 34th Annual Meeting of the Orthopaedic Research Society (Atlanta GA, February 1–4, 1988) and Orthopaedic Research Society (Park Ridge, IL, 1988).

    Google Scholar 

  40. R. W. Goulet, M. J. Ciarelli, S. A. Goldstein, J. L. Kuhn, L. A. Feldkamp, D. Kruger, D. Viviano, F. Champlain, and L. S. Matthews, The effects of architecture and morphology on the mechanical properties of trabecular bone. Transactions of the 34th Annual Meeting of the Orthopaedic Research Society (Atlanta GA, February 1–4, 1988) and Orthopaedic Research Society (Park Ridge, IL, 1988).

    Google Scholar 

  41. M. W. Layton, S. A. Goldstein, R. W. Goulet, L. A. Feldkamp, D. J. Kubinski, and G. G. Bole, Examination of subchondral bone architecture in experimental osteoarthritis by microscopic computed axial tomography. Arthritis Rheum 31,1400–5 (1986).

    Article  Google Scholar 

  42. D. K. Dedrick, S. A. Goldstein, K. D. Brandt, B. L. O’Connor, R. W. Goulet, and M. Albrecht, A longitudinal study of subchontral plate and traecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months, Arthritis Rheum 36,1460–7 (1993).

    Article  PubMed  CAS  Google Scholar 

  43. L. A. Feldkamp, S. A. Goldstein, A. M. Parfitt, G. Jesion, and M. Kleerekoper, The direct examination of three-dimensional bone architecture in vitro by computed tomography, JBone Min Res 4,3–11 (1989).

    Article  CAS  Google Scholar 

  44. J. L. Kuhn, R. W. Goulet, M. Pappas, and S. A. Goldstein, Morphometric and anisotropic symmetries of the canine distal femur. JOrthop Res 8(5),776–80 (1990).

    Article  CAS  Google Scholar 

  45. J. Serra, Image Analysis and Mathematical Morphology (Academic Press, London, 1982).

    Google Scholar 

  46. R. W. Goulet, The Quantification of the Structure and Mechanical Properties of Trabecular Bone. University of Michigan, 1993 (Unpublished Thesis).

    Google Scholar 

  47. V. K. Mardia, Statistics of Directional Data, (Academic Press, London, New York, 1972) pp. 218–222.

    Google Scholar 

  48. A. Odgaard, E. B. Jensen, and H. J. Gundersen, Estimation of structural anisotropy based on volume orientation: a new concept. J Microsc 157(Pt2),149–62 (1990).

    Article  PubMed  CAS  Google Scholar 

  49. K. I. Kanatani, Procedures for sterological estimation of structural anisotropy, Int J Eng Sci 23,587–598 (1985).

    Article  Google Scholar 

  50. P. K. Zysset, R. W. Goulet, and S. J. Hollister, A global relationship between trabecular bone morphology and homogenized elastic properties JBiomech Eng 120(5),640–646 (1998)

    Article  Google Scholar 

  51. A. Vesterby, H. J. Gundersen, and F. Melsen, Star volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variation. Bone 10(1),7–13 (1989).

    Article  PubMed  CAS  Google Scholar 

  52. M. Kothari, T. M. Keaveny, J. C. Lin, D. C. Newitt, and S. Majumdar, Measurement of intraspecimen variations in vertebral cancellous bone architecture Bone 25(2),245–50 (1999).

    CAS  Google Scholar 

  53. O. C. Yeh, and T. M. Keaveny, Biomechanical effects of intraspecimen variations in trabecular architecture: a three-dimensional finite element study, Bone 25(2),223–8 (1999).

    Article  PubMed  CAS  Google Scholar 

  54. T. Uchiyama, T. Tanizawa, H. Muramatsu, N. Endo, H. E. Takahashi, and T. Hara, Three-dimensional microstructural analysis of human trabecular bone in relation to its mechanical properties Bone 25(4),48791 (1999).

    Google Scholar 

  55. S. Majumdar, J. Lin, T. Link, J. Millard, P. Augat, X. Ouyang, D. Newitt, R. Gould, M. Kothari, and H. Genant, Fractal analysis of radiographs: assessment of trabecular bone structure and prediction of elastic modulus and strength. Med Phys 26(7),1330–40 (1999).

    Article  PubMed  CAS  Google Scholar 

  56. E. Lespessailles, A. Jullien, E. Eynard, R. Harba, G. Jacquet, J. P. Ildefonse, W. Ohley, and C. L. Benhamou, Biomechanical properties of human os calcanei: relationships with bone density and fractal evaluation of bone microarchitecture, JBiomech 31(9),817–24 (1998).

    Article  CAS  Google Scholar 

  57. J. Millard, P. Augat, T. M. Link, M. Kothari, D. C. Newitt, H. K. Genant, and S. Majumdar, Power spectral analysis of vertebral trabecular bone structure from radiographs: orientation dependence and correlation with bone mineral density and mechanical properties, Calcif Tisssue Inter, 63(6),482–9 1998.

    Article  CAS  Google Scholar 

  58. S. Majumdar, D. Newitt, A. Mathur, D. Osman, A. Gies, E. Chiu, J. Lotz, J. Kinney, and H. Genant, Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics, Osteoporos Int 6(5),376–85 (1996)

    Article  PubMed  CAS  Google Scholar 

  59. C. L. Benhamou, E. Lespessailles, and V. Royant, Bone structure and mechanical resistance of the bone tissue, Presse Med 25(6),249–54 (1996).

    PubMed  CAS  Google Scholar 

  60. T. Hildebrand, A. Laib, R. Muller, J. Dequeker, and P. Ruegsegger, Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Min Res 14(7),1167–74 (1999).

    Article  CAS  Google Scholar 

  61. A. Laib, and P. Ruegsegger, Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput Med Imaging Graph 23,69–74 (1990.

    Article  Google Scholar 

  62. M. Ding, and I. Hvid, Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone Bone 26(3),291–5 (2000).

    CAS  Google Scholar 

  63. B. R. McCreadie, Structural and Material Changes in Osteoporosis: Impact on the Mechanical Environment of the Osteocyte, University of Michigan, 2000 (Unpublished Thesis).

    Google Scholar 

  64. R. B. Martin, D. B. Burr, and N. A. Sharkey, Skeletal Tissue Mechanics, (Springer-Verlag, Inc., New York, NY, 1998).

    Google Scholar 

  65. G. Marotti, The structure of bone tissues and the cellular control of their deposition Ital JAnat Embry 101(4),25–79 (1996).

    CAS  Google Scholar 

  66. M. M. Giraud-Guille, Twisted plywood architecture of collagen fibrils in human compact bone osteons Calcif Tissue Int 42(3),167–80 (1988).

    CAS  Google Scholar 

  67. S. Weiner, T. Arad, I. Sabanay and W. Traub, Rotated plywood structure of primary lamellar bone in the rat: orienetations of the collagen fibril arrays, Bone 20,509–514 (1997).

    Article  PubMed  CAS  Google Scholar 

  68. J. D. Currey, The effect of porosity and mineral content on the young’s modulus of elasticity of compact bone, JBiomech; 21,131–139 (1988).

    Article  CAS  Google Scholar 

  69. J. L. Kuhn, S. A. Goldstein, K. Choi, M. London, L. A. Feldkamp, and L. S. Matthews, Comparison of the trabecular and cortical tissue moduli from human iliac crests, JOrthop Res 7,876–884 (1989).

    Article  CAS  Google Scholar 

  70. K. Choi and S. A. Goldstein, A comparison of the fatigue behavior of human trabecular and cortical bone tissue, JBiomech 25,1371–1381 (1992).

    Article  CAS  Google Scholar 

  71. K. Choi, J. L. Kuhn, M. J. Ciarelli, and S. A. Goldstein, The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus JBiomech 23, 1103–1113 (1990).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCreadie, B.R., Goulet, R.W., Feldkamp, L.A., Goldstein, S.A. (2001). Hierarchical Structure of Bone and Micro-Computed Tomography. In: Majumdar, S., Bay, B.K. (eds) Noninvasive Assessment of Trabecular Bone Architecture and the Competence of Bone. Advances in Experimental Medicine and Biology, vol 496. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0651-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0651-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5177-1

  • Online ISBN: 978-1-4615-0651-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics