In Vivo Micro Tomography

  • Adrian Kohlbrenner
  • Bruno Koller
  • Stefan Hämmerle
  • Peter Rüegsegger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 496)


The diagnosis of osteoporosis is challenging. Usually, the disease progresses slowly, and it is therefore difficult to detect osteoporosis early, or to document the progression of the disease and the effect of a treatment. Several researchers have observed that bone quality cannot be assessed reliably with bone density alone, and that bone microarchitecture has to be considered as well.1-4In spite of these findings, clinical diagnosis still relies almost exclusively on the measurement of bone density. Three-dimensional computed tomography offers a way out of this dilemma. Laib, Rüegsegger, et al. showed with a three-dimensionalin vivoCT scanner that bone structure provides valuable additional information on the skeleton.5,6In recent years, microtomography became an increasingly popular method to image complex structures with features in the micrometer range. A microtomographic system typically assesses a sample in 3D at high spatial resolution, and thus allows unobstructed visual access to the sample’s inner structure. Regardless of whetherin vivoorin vitromeasurements are to be performed, high spatial resolution is the prime factor guiding today’s CT scanner developments. Dose and scanning speed become important issues forin vivomeasurements. Since patient or subject movement have an adverse effect on image quality, the scanning speed ofin vivoCT systems has to be as short as possible.


Scanning Scheme Pencil Beam Scanning Source Collimator Microtomographic System Load Transfer Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Kleerekoper, A. R. Villanueva, J. Stanciu, D. S. Rao and A. M. Parfitt, The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fracturesCalcif. Tissue Int.37, 594–597 (1985).CrossRefGoogle Scholar
  2. 2.
    S. A. Goldstein, S. J. Hollister, J. L. Kuhn and N. Kikuchi, The mechanical and remodeling properties of trabecular bone, in:Biomechanics of Diarthrodial Joints Vol. 2edited by V.C. Mow, A. Ratcliffe, SL-Y Woo, (Springer-Verlag, New York, 1990), pp. 61–81.Google Scholar
  3. 3.
    A.M. Parfitt, Implications of architecture for the pathogenesis and prevention of vertebral fractureBone13, 41–47 (1992).CrossRefGoogle Scholar
  4. 4.
    B. D. Snyder, S. Piazza, W. T. Edward, and W. C. Hayes, Role of trabecular morphology in the etiology of age-related vertebral fracturesCalcif. Tissue Int.53-S1, 14–2, (1993).Google Scholar
  5. 5.
    A. Laib, H. J. Häuselmann and P. Rüegsegger, In vivo high resolution 3D-QCT of the human forearmTechnology and Health Care6,321–327 (1998).Google Scholar
  6. 6.
    P. Rüegsegger, A. Kohlbrenner, D. Ulrich and A. Laib, First results of a multiple fan-beam approach to analyze bone structure in vivoProceedings of SPIE, Developments in X-ray tomography II3772, 55–62 (1999).Google Scholar
  7. 7.
    T. Hildebrand and P. Rüegsegger, A new mothod for the model-independent assessment of thickness in three-dimensional imagesJ. Microsc.185, 67–75 (1997).CrossRefGoogle Scholar
  8. 8.
    A. Laib, T. Hildebrand, H. J. Häuselmann and P. Rüegsegger, Ridge number density: A new parameter for in vivo bone structure analysisBone21, 541–546 (1997).PubMedCrossRefGoogle Scholar
  9. 9.
    B. van Rietbergen, H. Weinans, R. Huiskes and A. Odgaard, A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element modelsJ. Biomechanics28(1), 69–81 (1995).CrossRefGoogle Scholar
  10. 10.
    D. Ulrich, T. Hildebrand, B. van Rietbergen, R. Müller and P. Rüegsegger, The quality of trabecular bone evaluated with micro-computed tomography, FEA and mechanical testing, in:Bone Research in Biomechanicsedited by G. Lowet et al., (lOS Press, 1997), pp. 97–112.Google Scholar
  11. 11.
    B. van Rietbergen, R. Müller, D. Ulrich, P. Rüegsegger and R. Huiskes, Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructionsJ. Biomechanics32, 443–451 (1999).CrossRefGoogle Scholar
  12. 12.
    D. Ulrich, B. van Rietbergen, A. Laib and P. Rüegsegger, Load transfer analysis of the distal radius from in-vivo high-resolution CT-imagingJ. Biomechanics32, 821–828 (1999).CrossRefGoogle Scholar
  13. 13.
    B. P. Flannery, H. W. Heckman, W. G. Roberge and K. L. D’Amico, Three-dimensional X-ray microtomographyScience237, 1439–1444 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    L. A. Feldkamp, S. A. Goldstein, A. M. Parfitt, G. Jesion and M. Kleerekoper, The direct examination of three-dimensional bone architecture in vitro by computed tomographyJournal of Bone and Mineral Research4(1), 3–11 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    E. J. Morton, S. Webb, J. E. Bateman, L. J. Clarke and C. G. Shelton, Three-dimensional x-ray microtomography for medical and biological applicationsPhys. Med. Biol.35, 805–820 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    U. Bonse, R. Nusshardt, F. Busch, R. Pahl, J. H. Kinney, Q. C. Johnson, R. A. Saroyan and M. C. Nichols, X-ray tomographie microscopy of fibre-reinforced materialJournal of Material Science26, 4076–4085 (1991).CrossRefGoogle Scholar
  17. 17.
    J. H. Kinney and M. C. Nichols, X-ray tomographie microscopy (XTM) using synchrotron radiationAnnu. Rev. Mater. Sci.22, 121–52 (1992).CrossRefGoogle Scholar
  18. 18.
    J. C. Elliott, P. Anderson, X. J. Gao, F. S. L. Wong, G. R. Davis and S. E. P. Dowker, Application of scanning microradiography and X-ray microtomography to studies of bones and teethJournal of X-ray Science and Technology4, 102–117 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    K. Machin and S. Webb, Cone-beam X-ray microtomography of small specimensPhys. Med. Biol.39, 1639–1657 (1994).PubMedCrossRefGoogle Scholar
  20. 20.
    J. H. Kinney, N. E. Lane and D. L. Haupt, In vivo three-dimensional microscopy of trabecular boneJournal of Bone and Mineral Research10(2)264–270 (1995).PubMedCrossRefGoogle Scholar
  21. 21.
    P. Rüegsegger, B. Koller and R. Müller, A microtomographic system for the nondestructive evaluation of bone architectureCalcif Tissue Int.58, 24–29 (1996).PubMedCrossRefGoogle Scholar
  22. 22.
    H. R. Lee, B. Lai, W. Yun, D. C. Mancini and Z. Cai, X-ray microtomography as a fast three-dimensional imaging technology using a CCD camera coupled with a CdWo4 single-crystal scintillatorProceedings of SPIE3149, 257–264 (1997).CrossRefGoogle Scholar
  23. 23.
    S. M. Jorgensen, O. Demirkaya and E. L. Ritman, Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CTAm. J. Physiol.275, H1103–H1114 (1998).PubMedGoogle Scholar
  24. 24.
    A. Koch, C. Raven, P. Spann and A. Snigirev, X-ray imaging with submicrometer resolution employing transparent luminiscent screensJ. Opt. Soc. Am. A15(7), 1940–1951 (1998).CrossRefGoogle Scholar
  25. 25.
    A. Kohlbrenner, S. Hämmerle, A. Laib and P. Rüegsegger, Fast 3D multiple fan-beam CT systemsProceedings of SPIE Developments in X-ray tomography ll3772, 44–5 (1999).Google Scholar
  26. 26.
    A. Kohlbrenner, S. Hämmerle, A. Laib and P. Rüegsegger, A 3D microtomographic system with stacked fan-beam geometryNuclear Instruments and Methods in Physics Research N/MA443(2–3), 531–539 (2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Adrian Kohlbrenner
    • 1
  • Bruno Koller
    • 2
  • Stefan Hämmerle
    • 2
  • Peter Rüegsegger
    • 1
  1. 1.Institute for Biomedical EngineeringUniversity and ETH ZürichSwitzerland
  2. 2.Scanco Medical AGBassersdorfSwitzerland

Personalised recommendations