Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 496))

Abstract

Trabecular bone architecture is a significant determinant of both its effective stiffness and strength. Developing a mathematical equation to characterize stiffness and strength dependence on architecture, known as astructure function relationshiphas two important applications: 1)predicting bone fragilityand 2)designing scaffolds to regenerate bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. C. Cowin, The relationship between the elasticity tensor and the fabric tensor, Mechanics of Materials 4,137 (1985).

    Article  Google Scholar 

  2. C. H. Turner, S. C. Cowin, J. Y. Rho, R. B. Ashman and J. C. Rice, The fabric dependence of the orthotropic elastic constants of cancellous bone, J. Biomech. 23,549–561 (1990).

    Article  PubMed  CAS  Google Scholar 

  3. G. Yang, J. Kabel, B. van Rietbergen, A. Odgaard, R. Huiskes and S. C. Cowin, The anisotropic Hooke’s law for cancellous bone and wood, Journal of Elasticity 53,125–146 (1997).

    Article  Google Scholar 

  4. P. K. Zysset and A. Curnier, An alternative model for anisotropic elasticity based on fabric tensors, Mechanics of Materials 21,243–250 (1995).

    Article  Google Scholar 

  5. P. K. Zysset and A. Curnier, A 3D damage model for trabecular bone based on fabric tensors, J. Biomech. 29,1549–1558 (1996).

    PubMed  CAS  Google Scholar 

  6. P. K. Zysset, M. S. Ominsky and S. A. Goldstein, A novel 3D microstructural model for trabecular bone: Il The relationship between fabric and the yield surface, Computer Methods in Biomechanics and Biomedical Engineering 1,1–11 (1999).

    Article  Google Scholar 

  7. B. van Rietbergen, A. Odgaard, J. Kabel and R. Huiskes, Relationships between bone morphology and bone elastic properties can be accurately quantified using high resolution computer reconstruction, Journal of Orthopaedic Research 16, 23–28 (1997).

    Article  Google Scholar 

  8. J. Kabel, B. van Rietbergen, A. Odgaard and R. Huiskes, Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture, Bone 25, 481–486 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. B. van Rietbergen, H. Weinans and R. Huiskes, A new method to determine trabecular bone elastic properties and loading using micromechanical finite element models, J. Biomech. 28, 69–81 (1995).

    Article  PubMed  Google Scholar 

  10. S. C. Cowin, Fabric dependence of an anisotropic strength criterion, Mechanics of Materials 5,251–260 (1986).

    Article  Google Scholar 

  11. S. Pietruszezak, D. Inglis and G. N. Pande, A fabric-dependent fracture criterion for bone, J. Biomech. 32, 1071–1079 (1999).

    Article  Google Scholar 

  12. E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka and Y. Kuboki, Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis, J. Biochem. 121, 317–324 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. S. P. Bruder, K. H. Kraus, V. M. Goldberg and S. Kadiyala, Critical-Sized Canine Segmental Femoral Defects are Healed By Autologous Mesenchymal Stem Cell Therapy, 44th Annual Meeting of the Orthopaedic Research Society, pp. 147 (1998).

    Google Scholar 

  14. M. P. Bendsoe, Optimization of structural topology, shape and material, (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  15. S. J. Hollister and N. Kikuchi, Homogenization theory and digital imaging: a basis for studying the mechanics and design principles of bone tissue, Biotech Bioeng. 43, 586–596 (1994).

    Article  CAS  Google Scholar 

  16. S. Teng and S. W. Herring, Anatomic and directional variation in the mechanical properties of the mandibular condyle in pigs, J. Dent. Res. 75, 1842–1850 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. K. Choi, J. L. Kuhn, M. J. Ciarelli and S. A. Goldstein, The elastic properties of subchondral, trabecular and cortical bone tissue and the size dependency of cortical bone modulus, J. Biomech. 23, 1103–1113 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. J. L. Kuhn, S. A. Goldstein, K. Choi, M. London, L. A. Feldkamp and L. S. Matthews, Comparison of the trabecular and cortical tissue moduli from human iliac crests, J. Orthopaedic Research 7,876–884 (1989).

    Article  CAS  Google Scholar 

  19. P. L. Mente and J. L. Lewis, Experimental method for the measurement of the elastic modulus of trabecular bone tissue, J. Orthopaedic Research 7, 456–461 (1989).

    Article  CAS  Google Scholar 

  20. D. S. Muggli, A. K. Burkoth and K. S. Anseth, Crosslinked polyanhydrides for use in orthopedic applications: degradation behavior and mechanics, J. Biomed. Mater. Res. 46, 271–278 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. J. Bronzino, The Biomedical Engineering Handbook, (IEEE press, 1996).

    Google Scholar 

  22. S. A. Goldstein, The mechanical properties of trabecular bone: dependence on anatomic location and function, J. Biomech. 20, 1055–1061 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hollister, S.J., Zysset, P.K., Guldberg, R.E., Chu, T.M., Halloran, J.W. (2001). Engineering Microstructures to Evaluate and Replace Trabecular Bone. In: Majumdar, S., Bay, B.K. (eds) Noninvasive Assessment of Trabecular Bone Architecture and the Competence of Bone. Advances in Experimental Medicine and Biology, vol 496. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0651-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0651-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5177-1

  • Online ISBN: 978-1-4615-0651-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics