Skip to main content

Visualization and Analysis of Trabecular Bone Architecture in the Limited Spatial Resolution Regime of In Vivo Micro-MRI

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 496))

Abstract

There is substantial evidence that besides the volume fraction of the bone (often quantified in terms of apparent bone density) the three-dimensional arrangement of the trabecular network is a major determinant of elastic modulus1-5and ultimate strength.6-8

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. Hodgkinson and J. D. Currey, The Effect of Variation in Structure on the Young’s Modulus of Cancellous Bone: A Comparison of Human and Non-Human Material.Proc. Instn. Mech. Engrs.?204?115 (1990).

    Google Scholar 

  2. M. J. Ciarelli, S. A. Goldstein, J. L. Kuhn, D. D. Cody, and M. B. Brown, Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography.J. Orthop. Res.?9?674 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. S. A. Goldstein, R. Goulet, and D. McCubbrey, Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone.Calcif. Tissue Int.?53?S127 (1993).

    Article  PubMed  Google Scholar 

  4. S. N. Hwang, F. W. Wehrli, and J. L. Williams, Probability-based structural parameters from 3D NMR images as predictors of trabecular bone strength.Med. Phys.?24?1255 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. B. G. Gomberg, P. K. Saha, H. K. Song, S. N. Hwang, and F. W. Wehrli, Application of topological analysis to magnetic resonance images of human trabecular bone.IEEE Trans. Med. Im.?19?166 (2000).

    Article  CAS  Google Scholar 

  6. R. W. Goulet, S. A. Goldstein, M. J. Ciarelli, J. L. Kuhn, M. B. Brown, and L. A. Feldkamp, The relationship between the structural and orthogonal compressive properties of trabecular bone.J. Biomech.?27?375 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. Z. M. Oden, D. M. Selvitelli, W. C. Hayes, and E. R. Myers, The effect of trabecular structure on DXA-based predictions of bovine bone failure.Calcif Tissue Int?63?67 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. C. L. Gordon, C. E. Webber, and P. S. Nicholson, Relation between image-based assessment of distal radius trabecular structure and compressive strength.Bioeng.?49?390 (1998).

    CAS  Google Scholar 

  9. M. Kleerekoper, A. R. Villanueva, J. Stanciu, D. Sudhaker Rao, and A. M. Partitt, The Role of Three- Dimensional Trabecular Microstructure in the Pathogenesis of Vertebral Compression Fractures.Calcif. Tissue Int.?37?594 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. R. R. Recker, Architecture and vertebral fracture.Calcif. Tissue Int.?53 Suppl 1?S139 (1993).

    Article  Google Scholar 

  11. E. Legrand, D. Chappard, C. Pascaretti, M. Duquenne, S. Krebs, V. Rohmer, M. F. Basle, and M. Audran, Trabecular bone microarchitecture, bone mineral density and vertebral fractures in male osteoporosis.J. Bone Miner. Res.?15?13 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. J. Ma, F. W. Wehrli, and H. K. Song, Fast 3D large-angle spin-echo imaging (3D FLASE).Magn. Reson. Med.?35?903 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. S. Majumdar, H. K. Genant, S. Grampp, D. C. Newitt, V.-H. Truong, J. C. Lin, and A. Mathur, Correlation of trabecular bone structure with age, bone, mineral density, and osteoporotic status: in vivo studies in the distal radius using high-resolution magnetic resonance imaging.J. Bone Miner. Res?.12?111 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. H. K. Song and F. W. Wehrli, In vivo micro-imaging using alternating navigator echoes with applications to cancellous bone structural analysis.Magn. Reson. Med.?41?947 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. A. Laib, T. Hildebrand, H. J. Hauselmann, and P. Ruegsegger, Ridge number density: a new parameter for in vivo bone structure analysis.Bone?21?541 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. A. Laib, H. J. Hauselmann, and P. Rüegsegger, In vivo high resolution 3D-QCT of the human forearm.Tech. Health Care?6?329 (1998).

    CAS  Google Scholar 

  17. C. L. Gordon, C. E. Webber, N. Christoforou, and C. NahmiasIn vivo?assessment of trabecular bone structure at the distal radius from high-resolution magnetic resonance images.Med. Phys.?24?585 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. F. W. Wehrli, S. N. Hwang, J. Ma, H. K. Song, J. C. Ford, and J. G. Haddad, Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing [published erratum appears in Radiology 1998 Jun;207(3):8331.Radiology?206?347 (1998).

    PubMed  CAS  Google Scholar 

  19. T. M. Link, S. Majumdar, P. Augat, J. C. Lin, D. Newitt, Y. Lu, N. E. Lane, and H. K. Genant, In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients.J. Bone Miner. Res.?13?1175 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. R. L.Ehman and J. P. Felmlee, Adaptive technique for high-definition MR imaging of moving structures.Radiology?173?255 (1989).

    PubMed  CAS  Google Scholar 

  21. D. Atkinson, D. L. G. Hill, P. N. R. Stoyle, P. E. Summers, and S. F. Keevil, Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion.IEEE Trans. Med. Im.?16?903 (1997).

    Article  CAS  Google Scholar 

  22. H. K. Song and F. W. Wehrli, Comparison of different motion correction schemes for in vivo microimaging, Proc ISMRM, Seventh Scientific Meeting (Int Soc Magnetic Resonance in Medicine, Philadelphia, 1999), pp. 2120.

    Google Scholar 

  23. H. W. Chung, F. W. Wehrli, J. L. Williams, S. D. Kugelmass, and S. L. Wehrli, Quantitative analysis of trabecular microstructure by 400 MHz nuclear magnetic resonance imaging.J. Bone Miner. Res.?10?, 803 (1995).

    Article  PubMed  CAS  Google Scholar 

  24. S. N. Hwang and F. W. Wehrli, Estimating voxel volume fractions of trabecular bone on the basis of magnetic resonance images acquired in vivo. Int. J. Im. Syst. Technol. 10?186 (1999).

    Article  Google Scholar 

  25. S. N. Hwang and F. W. Wehrli, Subvoxel processing: a new method for alleviating partial volume blurring in MR images of trabecular bone, Proc Int Soc Magnetic Resonance in Medicine, Eighth]nt Meeting (Int Soc Magnetic Resonance in Medicine, Denver, 2000), pp. 2134.

    Google Scholar 

  26. Z. Wu, H. Chung, and F. W. Wehrli, A Bayesian approach to subvoxel tissue classification in NMR microscopic images of trabecular bone.Magn. Reson. Med.?31?, 302 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. P. K. Saha, B. R. Gomberg, and F. W. Wehrli, Three-dimensional digital topological characterization of cancellous bone architecture.Int. J. lin. Syst. Technol.?11?, 81 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wehrli, F.W., Hwang, S.N., Song, H.K., Gomberg, B.R. (2001). Visualization and Analysis of Trabecular Bone Architecture in the Limited Spatial Resolution Regime of In Vivo Micro-MRI. In: Majumdar, S., Bay, B.K. (eds) Noninvasive Assessment of Trabecular Bone Architecture and the Competence of Bone. Advances in Experimental Medicine and Biology, vol 496. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0651-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0651-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5177-1

  • Online ISBN: 978-1-4615-0651-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics