Arboform® - A Thermoplastic, Processable Material from Lignin and Natural Fibers

  • Helmut Nägele
  • Jürgen Pfitzer
  • Edgar Nägele
  • Emilia R. Inone
  • Norbert Eisenreich
  • Wilhelm Eckl
  • Peter Eyerer


The natural polymer lignin is a by-product of the pulp and paper industry and every year approximately 50 million tons are generated in chemical pulp mills worldwide. So far the majority of them has been directly supplied to a thermal use for the power supply of the chemical pulp mills. This polymer lignin is the main component of a new class of engineering structural materials and parts for equipment in industrial applications using only renewable resources. ARBOFORM®, a material of this class, consists of lignin, natural fibers for reinforcement and natural additives supporting processing and properties. Although it exhibits wood-like properties, it can be processed like a thermoplastic material and used for engineering products. The mixing and compounding of granules of this material are based on standard technologies of polymer engineering. They can be injection molded and pressed like a thermoplastic raw material. The production of component parts and pressed plates from this material takes place at lower temperatures and the resulting parts show a lower shrinkage than those made from synthetic plastics. The mechanical behavior, however, is wood-like and the measured properties lie in a range of those of polyamide. Some examples of possible applications for mass consumer goods and industrial equipment, which are currently under detailed investigation, are discussed.


Injection Molding Natural Fiber Medium Density Fiberboard Mill Cutting Thermoplastic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Gandini and N. Belgacem, Recent advances in the elaboration of polymeric materials derived from biomass components, Polym. Int. 47(3), 267–277 (1998).CrossRefGoogle Scholar
  2. 2.
    Katalyse: Institut für angewandte Umweltforschung, Leitfaden nachwachsende Rohstoff (C. F. Müller Verlag, Heidelberg, 1998).Google Scholar
  3. 3.
    D. L. Kaplan, Biopolymers from Renewable Resources (Springer Verlag, Berlin, 1998).CrossRefGoogle Scholar
  4. 4.
    D. R. Gilbert, Cellulosic Polymers - Blends and Composites (Hanser Verlag, Munich, 1994).Google Scholar
  5. 5.
    J. U. Otaigbe, H. Goel, T. Babcock, and J. Jane, Processability and properties of biodegradable plastics made from agricultural biopolymers, J. Elastomers Plast. 31(1), 56–72 (1999).Google Scholar
  6. 6.
    R. Wagenführ, Anatomie des Holzes - Strukturanalytik,Identifizierung, Nomenklatur, Mikrotechnologie (DRW-Verlag, Leinfelden-Echterdingen, 1999).Google Scholar
  7. 7.
    J. Simon, H. P. Müller, R. Koch, and V. Müller, Thermoplastic and biodegradable polymers of cellulose, Polym. Degrad. Stab. 59(1–3), 107–117 (1998).CrossRefGoogle Scholar
  8. 8.
    E. Sjöström and R. Alen (Eds.), Chemistry, Pulping and Papermaking (Springer-Verlag, Berlin, 1999), pp. 8–9.Google Scholar
  9. 9.
    F. F. Nord and G. de Stevens, Lignins and lignification, Encyclopedia of Plant Physiology Vol. 10, edited by W. Ruhland (Springer-Verlag, Berlin, 1958), p. 389.Google Scholar
  10. 10.
    I. A. PearlThe Chemistry of Lignin (Marcel Dekker, New York, 1967).Google Scholar
  11. 11.
    C. J. Biermann, Pulping and Papermaking, 2nd ed. (Academic Press, New York, 1996).Google Scholar
  12. 12.
    F. E. Brauns, The Chemistry of Lignin (Academic Press, New York, 1952).Google Scholar
  13. 13.
    F. E. Brauns, The Chemistry of Lignin:Supplement Volume (Academic Press, New York, 1960).Google Scholar
  14. 14.
    Ullmann’s Encyclopedia of Industrial Chemistry Vol. A 15 (VCH-Verlag, 1992) p. 305.Google Scholar
  15. 15.
    Bild der Wissenschaft, Baumstark: Flüssiges Holz (Deutsche Verlags-Anstalt GmbH, Stuttgart, Feb. 2000), pp. 73–76.Google Scholar
  16. 16.
    Holz und Kunststoffverarbeitung HK, Flüssiges Holz (DRW-Verlag Weinbrenner GmbH & Co., Leinfelden-Echterdingen, Nov. 1999), pp. 44–47.Google Scholar
  17. 17.
    Brand eins, Die Holzverflüssiger (Brand 1 Verlagsgesellschaft mbH, Hamburg, May 2000), pp. 58–63.Google Scholar
  18. 18.
    Das Magazin für Holz und Ausbau dds, Ist mit Holz alles machbar? (Der Deutsche Schreiner Verlag GmbH, Stuttgart, Jan. 2001), pp.40–43.Google Scholar
  19. 19.
    KunststofInformation KI Tecnaro: Lignin-Werkstoff für Industrie-Zwecke, 30(No. 1510), 7 (2000).Google Scholar
  20. 20.
    Design-Report, Geschmolzenes Holz (BLUE C. Verlag, Hamburg, Feb. 2001), p. 46.Google Scholar
  21. 21.
    Konstruktionspraxis, Aus nachwachsenden Rohstoffen, (Vogel Verlag und Druck GmbH & Co. KG, Würzburg, Dec. 2000), p. 38.Google Scholar
  22. 22.
    EDM-Funkey, Flüssiges Holz - phantastisch plastisch, (KEP Verlag, Stuttgart, Sept. 2001), p. 9.Google Scholar
  23. 23.
    J. Träger and U. Heisel, Untersuchungen zur Zerspanbarkeit von ARBOFORM®, Holzverarbeitung HOB, 2001, in press.Google Scholar
  24. 24.
    N. Eisenreich, W. Eckl, E. R. Inone, H. Nägele, and J. Pfitzer, Arboform - a thermoplastic made of renewable resources, Proceedings Electronic Goes Green 2000, Vol. 1,Technical Lectures (Joint International Congress and Exhibition, Berlin, Germany, Sept. 2000).Google Scholar
  25. 25.
    H.-G. Elias, An Introduction to Polymer Science (VCH Verlagsgesselschaft mbH, Weinheim, 1997).Google Scholar
  26. 26.
    O. Schwarz, F.-W. Ebeling, and B. Furth, Kuststoffverarbeitung (Vogel Buchverlag Würzburg, 1999).Google Scholar
  27. 27.
    A. J. Bailey and O. W. Ward, Synthetic lignin resins and plastic, Ind. Eng. Chem. 37, 12 (1945).CrossRefGoogle Scholar
  28. 28.
    J. Murphy, Reinforced Plastics Handbook (Elsevier Advanced Technology, Oxford, 1994).Google Scholar
  29. 29.
    S. Thomas, Short natural fiber reinforced polymer composites, Presentation at Unversität Stuttgart (Stuttgart, 1999).Google Scholar
  30. 30.
    P. Eyerer, N. Eisenreich, E. Inone, H. Nagele, and J. Pfitzer; “Flüssiges Holz”, HK Holz-und Kunststoffverarbeitung, Nov. 1999, p. 44.Google Scholar
  31. 31.
    H. Nagele and J. Pfitzer, Baumstark: Flüssiges Holz, Bild der Wissenschaft, Feb. 2000, p. 73.Google Scholar
  32. 32.
    O. Bobleter, Hydrothermal degradation of polymers derived from plants, Prog. Polym. Sci. 19, 797–841 (1994).CrossRefGoogle Scholar
  33. 33.
    O. Jedicke, N. Eisenreich, E. Steurenthaler, and H. Dümpert, Aquasolv® - Verfahren - Ein Konzept zur ganzheitlichen Verwendung von Biomasse, in: Verbindung mit “grüner Chemie”, Proceedings 2 nd Scientific Meeting in Zero Emissions (Frohnleiten, Technische Universität Graz, Austria, 1999), p. 107.Google Scholar
  34. 34.
    O. Jedicke and N. Eisenreich, Aquasolv® - Hydrothermolyse, The development of a process for completely use of biomass, Proceedings 1 st Biomass World Conference (Sevilla, Spain, 2000).Google Scholar
  35. 35.
    O. Jedicke, N. Eisenreich, and H. Dümpert, Aqauasolv - Verfahren; Hydrothermales Aufschlußverfahren zur Gewinnung Nachwachsender Rohstoffe aus Biomasse, Achema 2000; 26. Ausstelludgstagung Frankfurt am Main, Proceedings Neue Chemische Prozeße und Reaktionstechnik (Frankfurt, Germany, May 2000), p. 42.Google Scholar
  36. 36.
    O. Jedicke, I. Alvarez Ortega, and H. Nägele, Characterisation of polymeric composite materials based on natural components, lignin with wood and hemp fibers reinforcement, Proceedings 4 th Euromech Solids Mechanics Conference (Metz, France, June 2000), p.34.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Helmut Nägele
    • 1
  • Jürgen Pfitzer
    • 1
  • Edgar Nägele
    • 1
  • Emilia R. Inone
    • 2
  • Norbert Eisenreich
    • 2
  • Wilhelm Eckl
    • 2
  • Peter Eyerer
    • 2
  1. 1.Tecnaro GmbHAm Goldberg 2EisenachGermany
  2. 2.Fraunhofer Institut für Chemische TechnologiePfinztalGermany

Personalised recommendations