Advertisement

Nitrogenous Fertilizers from Lignins — A Review

  • Klaus Fischer
  • Rainer Schiene
Chapter

Abstract

The desire to apply and utilize lignin as a plant nutrient is prompted by two aspects. The first one is the chemical relationship between lignin and humus. The lignin component of plants is a basic chemical substance for the formation of soil organic matter (SOM). Humic substances are required for the soils to become fertile. At the same time they essentially influence the structure and the biological activity of the soils. The second aspect is the availability of great quantities of technical lignin, a by-product in the chemical processes of wood utilization. Nowadays, this happens almost exclusively in chemical pulp manufacture. However, the hydrolysis lignin from the processes of wood hydrolysis is also noteworthy from the historical point of view. Over the past few decades, chemical pulp manufacture has increased on a global scale, and so has the amount of byproduct lignin. In the modern industrial methods of chemical pulping technical lignins are used as a valuable fuel and they are also incorporated into the pulping chemical recovery system. Efforts made for their more effective material utilization, however, continue to be significant, in particular because of the fact that lignin is a sustainable, renewable material.

Keywords

Nitrogenous Fertilizer Kraft Lignin Hydrolysis Lignin OCH3 Group Veratric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P., eds., 1985, Humic Substances in Soil, Sediment and Water, John Wiley & Sons, New York, Section three.Google Scholar
  2. Alber, W., Fiedler, H.-J., Fischer, F., Pruzina, K.-D., Schiene, R., Schmidt, U., and Wienhaus, O., 1977, Verfahren zur Verwertung von Lignin oder ligninhaltigem Material, DDR-Patent 133 788.Google Scholar
  3. Allan, G. G., 1971, Modification reactions, in: Lignins - Occurence, Formation, Structure and Reactions, K. V. Sarkanen and C. H. Ludwig, eds., Wiley-Interscience, New York-London-Sidney-Toronto, pp. 511–574.Google Scholar
  4. Bratzler, K., and Aalrust, P., 1962, Vorrichtung zur Gewinnung von organischen stickstoffreichen Düngemitteln aus Zellstoffkocherablaugen oder ähnlichen Stoffen, Deutsches Patent 1 230 045.Google Scholar
  5. Bratzler, K., and Thormann, K., 1962, Verfahren zur Gewinnung von organischen stickstoffreichen Düngemitteln aus Zellstoffkocherablaugen oder ähnlichen Stoffen, Deutsches Patent 1 247 353.Google Scholar
  6. Capanema, E. A., Chen, C.-L., Gratzl, J., Kirkman, A., and Gracz, H., 1998, Studies on the mechanism of oxidative ammonolysis of technical lignin, Proceedings of 5 th European Workshop on Lignocellulosics and Pulp(Aveiro), pp. 397–400.Google Scholar
  7. Capanema, E., Balakshin, M.Yu., Chen, C.-L., Gratzl, J., Kirkman, A., and Gracz, H., 1999, Effect of temperature on the rate of oxidative ammonolysis and structures of N-modified lignin, 15N-Functionalization of kraft lignin and ist characterization by FTIR, Py-GC-MS and NMR, Proceedings of 10 th International Symposium of Wood and Pulping Chemistry, Vol. III(Yokohama), pp. 404–409.Google Scholar
  8. Caro, N., Frank, A. R., and Heimann, H., 1929, Verfahren zur Herstellung von kemnährstoffhaltigen organischen Düngemitteln, Deutsches Patent 527 313.Google Scholar
  9. Caro, N., and Frank, A. R., 1930, Verfahren zur Herstellung von stickstoffhaltigen, organischen Düngemitteln, Deutsches Patent 545 924.Google Scholar
  10. Caro, N., and Frank, A. R., 1930, Verfahren zur Herstellung von kernnährstofthaltigen, organischen Düngemitteln aus rezenten und fossilen Pflanzenkörpern, Deutsches Patent 545 923.Google Scholar
  11. Caro, N., and Frank, A. R., 1931, Verfahren zur Herstellung leicht assimilierbarer organischer Stickstoffdünger aus rezenten und fossilen Pflanzenkörpern, Deutsches Patent 559 254.Google Scholar
  12. Chudakov, M. I., Antipova, A. L., Egorov, A. E., Sokolova, I. V., Milovanov, A. V., Kondratev, B. N., Saidov, Ch. M., Pavlov, A. A., Ivanova, E. K., and Davydov, P. S., 1968a, Manufacturing methods for fertilizers based on lignin, USSR Patent 223 823 (Russ).Google Scholar
  13. Chudakov, M. I., Antipova, A. L., Egorov, A. E., Kondratev, B. N., Pavlov, A. A., Sokolov, A. M., Ivanova, E. K., and Davydov, P. S., 1968b, Production of nitrogen containing lignin fertilizers, Gidroliz. lesokhim. prom. (3), pp. 6–7 (Russ).Google Scholar
  14. Chudakov, M. I., Antipova, A. L., Samsonova, A. P., Mekler, N. A., Egorov, V. A., Basin, D. M., Gurevich, Y. E., Voropaev, I. S., Martynenko, K. D., Shiryaev, A. M., Stakhorskaya, L. K., and Kuznetsova, V. I., 1969, Manufacturing process of a substrate for the production of feed yeast, USSR Patent 299 541 (Russ).Google Scholar
  15. Davis, R. O. E., and Scholl, W., 1933, Process for ammoniating organic material, U. S. Patent 2 027 766.Google Scholar
  16. Deineko, I. P., 1989, Chemical conversion of lignin during wood delignification with oxygen, Author’s Abstract of a Doctoral Dissertation, LTA Leningrad (Russ).Google Scholar
  17. Deineko, I. P., and Kolotov, S. I., 1989, Kinetics of wood delignification with oxygen. 4. Oxidative ammonolysis of wood, Khim. Drev.(2), pp. 25–32 (Russ).Google Scholar
  18. Dence, C. W., 1971, Halogenation and nitration, in: Lignins - Occurence, Formation,Structure and Reactions, K. V. Sarkanen and C. H. Ludwig, eds., John Wiley & Sons, New York-London-Sidney-Toronto, pp. 373–432.Google Scholar
  19. Duiker, J. A., 1959, Verfahren zur Erzeugung von stickstoffhaltigen Düngemitteln aus salzsaurem Lignin, Österreich. Patent 213 416.Google Scholar
  20. Ehrenberg, C., 1929, Herstellung einer für die Konservierung von Wirtschaftsdüngern geeigneten Substanz, Deutsches Patent 508 258.Google Scholar
  21. Ehrenberg, C., 1930, Verfahren zur Herstellung einer für die Bindung von Ammoniak und Konservierung von Wirtschaftsdünger geeigneten Masse, Deutsches Patent 561 316.Google Scholar
  22. Ehrenberg, C., and Heimann, H.,1929, Herstellung von kernnährstoffhaltigen, organischen Düngemitteln aus rezenten und fossilen Pflanzenkörpern, Deutsches Patent 507 320.Google Scholar
  23. Erasmus, P., 1928, Verfahren zur Herstellung stickstoffhaltiger Verbindungen aus Kohlenhydraten, Deutsches Patent 514 510.Google Scholar
  24. Fiedler, H.-J., and Schmidt, S., 1979, Zur Düngewirkung von AO-Ligninen, Zellst. Pap. (Leipzig) 28(5), pp. 217–219.Google Scholar
  25. Fiedler, H.-J., and Schmidt, S., 1981, Untersuchungen zur Eignung von N-Ligninen als Düngemittel, I, Wirkung von AO-Ligninen auf Weidelgras, Wiss. Z. Tech. Univ, Dresden 30(1), pp. 197–201.Google Scholar
  26. Fiedler, H.-J., and Schmidt, S., 1983, Zur Wirkung von N-Ligninen auf Gehölze, Wiss. Z Tech. Univ.,Dresden 32(4), pp. 195–200.Google Scholar
  27. Fischer, F., Schiene, R., Wienhaus, O., Miletzky, F., and Pruzina, K.-D., 1983, Möglichkeiten zur Herstellung stickstoffhaltiger Produkte aus verhefter Ammoniumbisulfitablauge, Wiss. Z Tech. Univ. Dresden 32(3), pp. 179–84.Google Scholar
  28. Fischer, F., Schiene, R., Wienhaus, O., Pruzina, K.-D., Miletzky, F., and Kutnevich, A. M., 1985, Possibilities for producing N-containing products from ammoniumbisulfite spent liquor after previous yeast production, Khim. Drev. (2), pp. 65–72 (Russ).Google Scholar
  29. Fischer, K., and Schiene, R., 1990, Erkenntnisse zur Verwertung von Lignin, Aus der Arbeit von Plenum und Klasse der AdW der DDR, 7, pp. 23–48.Google Scholar
  30. Fischer, K., Schiene, R., Miletzky, F., and Katzur, J., 1990, Chemical modification of technical lignins by means of oxydative ammonolysis, Proceedings of 1 st European Workshop on Lignocellulosics and Pulp(Hamburg-Bergedorf), pp. 159–166.Google Scholar
  31. Fischer, K., 1991, N-Lignins - possibilities and chances, Proceedings of International Forum for Sulfur-Free LigninsSchwarzsee, Switzerland), pp. 1–5.Google Scholar
  32. Fischer, K., Schiene, R., and Katzur, J., 1992, Nitrogen modified lignins - a new source of humus, XVth Internat. Conference in Association with the Royal Society of Chemistry, Volume II (Lisboa), pp. 353–357.Google Scholar
  33. Fischer, K., Schiene, R., Zier, N., and Krusche, K., 1993, Structure and properties of Organocell lignins and N-modified Organocell lignins, Proceedings Cell, Meeting of the American Chemical Society, (Denver/USA, March/April 1993), p. 134.Google Scholar
  34. Fischer, K., Schiene, R., Krusche, K., Zier, N., and Katzur, J., 1995, Artificial humus prepared from lignin, Proc. Int. Chem. Congress of Pacific Basin Societies(Honolulu, Hawai), p. 417Google Scholar
  35. Fischer, K., Katzur, J., Schiene, R., and Liebner, F., 2001, N-modifiziertes Lignin - hochwertiger Humusersatzstoff und Langzeit-Düngemittel, Das Papier 55, in press.Google Scholar
  36. Flaig, W., Hingst, G., and Wesselhoeft, P., 1959, Verfahren zur Herstellung von stickstoffreichen Ligninprodukten, Deutsches Patent 1 745 632.Google Scholar
  37. Flaig, W., and Hingst, G., 1960, Verfahren zur Herstellung von stickstoffreichen Ligninprodukten, Österreich. Patent 233 027.Google Scholar
  38. Flaig, W., and Söchtig, H., 1973, Wirkung organischer Bodensubstanzen und Ertragssicherung, Landbauforschung Völkenrode 23(1), pp. 19–28.Google Scholar
  39. Flaig, W., and Söchtig, H., 1974, Ein Beitrag zur umweltfreundlichen Technik durch Verwertung der Sulfitablaugen der Zellstoffindustrie als organischer Stickstoffdünger, Neth. J. Agric. Sci. 22, pp. 255–261.Google Scholar
  40. Fláig, W., 1976, Die organische Bodensubstanz als nachliefernde Stickstoffquelle für die Ernährung der Pflanze und einige Modelle zur technischen Verwirklichung, Landbauforschung Völkenrode 26(2), pp. 117–121.Google Scholar
  41. Flaig, W., Beutelspacher, H., and Rietz, E.,1975, in: Soil Components Vol.1, J. E. Gieseking (ed.), Springer Verlag, New York, pp. 1–211.CrossRefGoogle Scholar
  42. Flaig, W., 1988, Generation of model chemical precursors, in: Humic Substances and Their Role in the Environment, Frimmel, F. H. and Christman, R. F., eds., Wiley - Interscience, Chichester-New YorkBrisbane-Toronto-Singapore, pp. 75–9.Google Scholar
  43. Forostyan, Y. N., and Kovalchuk, B. V., 1972, The conversion of hydrolysis lignin from husks of sunflower seeds with ammonia, Khim. prirod. soed. 8(1), pp. 136–138 (Russ).Google Scholar
  44. Franz, A., and Palm, A., 1930, Verfahren zur Herstellung organischer Düngemittel, Deutsches Patent 561 487.Google Scholar
  45. Gonzalez, C., Alvarez, R., and Coca, J., 1992, Nitrogenous humic fertilizers by ammoniation of humic material obtained from kraft black liquor, Water, Air and Soil Pollution 61, pp. 191–199.CrossRefGoogle Scholar
  46. Grosskinski, O., and Klempt,W., 1949, Verfahren zur Herstellung eines an löslichen Ammoniakverbindungen angereicherten Humusdüngers, Deutsches Patent 857 200.Google Scholar
  47. Grosskinski, O., and Klempt, W., 1949,Verfahren zur Gewinnung von Humusdünger, Deutsches Patent 883 609.Google Scholar
  48. Grosskinski, O., and Klempt, W., 1950, Verfahren zur Herstellung von stickstoffreichen Humusdüngemitteln, Deutsches Patent 870 565.Google Scholar
  49. Haider, K., 1996, Biochemie des Bodens, Ferdinand Enke Verlag, Stuttgart, pp. 20–64.Google Scholar
  50. Hayes, M. H. B., MacCarthy, P., Malcolm, R. L., and Swift, R. S., eds., 1989, Humic Substances II - In Search of Structure, John Wiley & Sons Ltd., Chichester, West Sussex, UK.Google Scholar
  51. Hingst, G., Aalrust, P., Bratzler, K., and Schafer, H., 1962, Verwendung von Produkten, die durch Umsetzung von Zellstoffkocherablauge mit Ammoniak und Sauerstoff hergestellt worden sind, als Düngemittel, Deutsches Patent 1 302 961.Google Scholar
  52. Hingst, G., Bratzler, K., Schafer, H., and Aalrust, P., 1963, Process for producing nitrogen-rich organic materials especially for use as fertilizers, Can. Patent 702 812.Google Scholar
  53. Ioffe, L. O., and Sergeeva, V. N., 1972, Process for the delignification of vegetable raw material, USSR Patent 344 054 (Russ).Google Scholar
  54. Ioffe, L. O., Sergeeva, V. N., and Klepech, E. A., 1975, Influence of the essential varying factors of the pulping by oxidative ammonolysis over the quality of pulp and spent liquor, Khim. Drev. (5), pp. 60–65 (Russ).Google Scholar
  55. Ishibashi, H., Tanoue, S., Minamata, K., Kudo, M., Khozu, S., Harada, I., and Iwakuni, Y., 1978, Verfahren zur Herstellung von organischen Düngemitteln, Deutsches Patent 28 11 235.Google Scholar
  56. Kaganskii, I. M., Mazhara, M. P., Kharlamov, V. V., and Sapotnitskii, S. A., 1968, Process for the production of nitrogenous fertilizers from wastes of the pulp industry, USSR Patent 213 902 (Russ).Google Scholar
  57. Kalninsh, A. Ya., Trushkin, V. A., Chudakov, M. I., Mozheiko, L. N., Gelfand, E. D., Raskin, M. I., and Telysheva, G. M., 1978, Utilization of lignin and lignin derivatives in the agriculture, Riga Zinatne (Russ).Google Scholar
  58. Katzur, J., 2001, Manuscript in preparation.Google Scholar
  59. Kazarnovskii, A. M., 1974, Investigations on process of oxidative ammonolysis of hydrolysis lignin, Author’s Abstract of a Doctoral Dissertation, Institute of the Pulp and Paper industry Leningrad (Russ).Google Scholar
  60. Kazarnovskii, A. M., and Chudakov, M. I., 1972, Identification of 2-methylimidazole in products of the hydrolysis lignin oxidative ammonolysis, Khim. Drev. 11, pp. 107–109 (Russ).Google Scholar
  61. Kazarnovskii, A. M., and Chudakov, M. I., 1973, Oxidative ammonolysis of hydrolysis lignin, Gidroliz. lesokhim. prom. 7, pp. 8–10 (Russ).Google Scholar
  62. Kazarnovskii, A. M., and Chudakov, M. I., 1976, Problem concerning the possible mechanism of the oxidative ammonolysis of lignin, Khim. Drev. (4), pp. 80–85 (Russ).Google Scholar
  63. Kazarnovskii, A. M., Antipova, A. W., and Ivanova, N. A., 1976, The kinds of nitrogen bonds in the AM lignin and their determination, Khim. Drev. (6), pp.-49–52 (Russ).Google Scholar
  64. Kim, Y. K., Plain, W. M., and Hatfield, J. D., 1981, Fertilizer from the oxidative ammoniation of sawdust, Ind. Eng. Chem. Prod. Res. Dev.,20(2), pp. 205–212.CrossRefGoogle Scholar
  65. Kleinert, Th., 1952, Verfahren zur Herstellung von organisch gebundenen Stickstoff enthaltenden Dünge-und Bodenverbesserungsmitteln aus Sulfitablaugen, Österreich. Patent 177 429.Google Scholar
  66. Knicker, H., Fruend, R., and Luedemann, H.-D.,1993, The chemical nature of nitrogen in native soil organic matter, Naturwissenschaften 80 pp. 219–221.CrossRefGoogle Scholar
  67. Kopnin, B. N., and Ioffe, L. O., 1975, Kinetics of the delignification of vegetable raw material by oxidative ammonolysis, Khim. Drev. (1), pp. 82–87 (Russ).Google Scholar
  68. Kort, M. J., 1970, Reactions of free sugars with aqueous ammonia, Advances in Carbohydrate Chemistry and Biochemistry 25 pp. 311–349.CrossRefGoogle Scholar
  69. Krusche, K., Zier, N., Fischer, K., Schiene, R., and Katzur, J., 1994, Investigations on N-modification of Organosolv lignins, 3 rd European Workshop on Lignocellulosics and Pulp, Stockholm, Proceedings, pp. 337–340.Google Scholar
  70. Lapierre, C., Monties, B., Meier, D., and Faix, O., 1994, Structural investigation of kraft lignins transformed via oxo-ammoniation to potential nitrogenous fertilizers, Holzforschung 48 pp. 63–68.CrossRefGoogle Scholar
  71. Martinez, A. de J., Delgado, E., Camacho, A., Gonzalez, V., Allan, G., and Zuniga, V., 1999, Catalytic ammoxidation of kraft lignin in an fluidized bed reactor, 10 th International Symposium of Wood and Pulping Chemistry,Main Symposium Yokohama June 7–10, pp. 549–551.Google Scholar
  72. Mazhara, M. P., Sapotnitskii, S. A., Vakhrushev, Yu. A., and Korosteleva, Z. N., 1969a, Investigation of the technological parameters of the oxidative ammonolysis of lignosulfonates, Khim. prom. Ukr. 58(2), pp. 13–16 (Russ).Google Scholar
  73. Mazhara, M. P., Sapotnitskii, S. A., Vakhrushev, Yu. A., and Korosteleva, Z. N., 1969b, Kinetics of the oxidative ammonolysis of lignosulphonates, Khim. prom. Ukr. 58(2), pp. 58–61 (Russ).Google Scholar
  74. Meier, D., Zuniga-Partida, V., Ramirez-Cano, F., Hahn, N.-C., and Faix, O., 1994, Conversion of technical lignins into slow-release nitrogenous fertilizers by ammoxidation in liquid phase, Bioresource Technology 49 pp. 121–128.CrossRefGoogle Scholar
  75. Mekler, N. A., Raskin, M. N., and Chudakov, M. I., 1974, Investigation of the oxidative degradation of lignin in alkaline medium, in: Chemistry and Utilization of Lignin, Zinatne Riga, pp. 342–348 (Russ).Google Scholar
  76. Melms, F., and Schwenzon, K., 1967, Verwertungsgebiete für Sulfitablauge, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.Google Scholar
  77. Miletzky, F., 1985, Über die Oxidation von Sulfitablaugen der Zellstoffindustrie mit molekularem Sauerstoff im alkalischen, insbesondere im ammoniakalischen Milieu, Dissertation Technische Universität Dresden. Google Scholar
  78. Miletzky, F., and Schiene, R., 1985, Über die oxydative Ammonolyse von Sulfitablauge (V) - Untersuchungen zur Kinetik, Zellst. Pap. (Leipzig) 34(5), pp. 186–188.Google Scholar
  79. Miletzky, F., Schiene, R., Alber, W., and Fischer, F. 1987, Über die oxydative Ammonolyse von Sulfitablauge. Normaldruckverfahren zur Herstellung von AO-Lignin, Zellst. Pap. (Leipzig) 36(1), pp. 4–5.Google Scholar
  80. Miletzky, F., Schiene, R., Fischer, K., and Fischer, F., 1990, Obtaining N-functionalized products from technical lignins, Proceedings of I st European Workshop on Lignocellulosics and Pulp (Hamburg-Bergedorf), pp.179–186.Google Scholar
  81. Murashkevich, T. U., Skrigan, A. I., and Belkova, A. Y., 1970, Absorption of nitrogen from ammonia water by hydrolysis lignin stored for different periods, From Ref Zh.,Khim., No. 19, abstr. P25 in: Chemical Abstracts 74 (1971), 88818j.Google Scholar
  82. Nettesheim, C., 1958, Verfahren zur Herstellung von stickstoffreichen Humusdüngemitteln mit hohem Ammoniakstickstoffgehalt, Deutsches Patent 1 061 803.Google Scholar
  83. Potthast, A., 1994, Charakterisierung der Stickstoftbindungsverhältnisse in N-modifizierten Ligninen unter Anwendung spektroskopischer Methoden, speziell der 15N-NMR-Spektroskopie, Diplomarbeit Technische Universität Dresden. Google Scholar
  84. Potthast, A., Schiene, R., and Fischer, K., 1996, Structural investigations of N-modified lignins by 15N-NMR spectroscopy and possible pathways for formation of nitrogen containing products related to lignin, Holzforschung 50(6), pp. 554–562.CrossRefGoogle Scholar
  85. Potthast, A., Schiene, R., and Fischer, K., 1997, Investigation on structure and formation of N-modified lignins, Book of Abstracts, 213 th ACS-Meeting, San Francisco, April 13–17, 1997,CELL 113 B.Google Scholar
  86. Preston, C. M., 1996, Applications of NMR to soil organic matter analysis: history and prospects, Soil Science 161 pp.144–166.CrossRefGoogle Scholar
  87. Pruzina, K.-D., 1979, Oxidative Ammonolyse von Ammoniumbisulfitablauge in einer Kleintechnischen Mehrzweck-Versuchsanlage. Untersuchungen zum Reaktionsablauf, Dissertation Technische Universität Dresden. Google Scholar
  88. Ramirez-Cano, F., Meier, D., Faix, O., and Zuniga, V., 1993, Ammoxidation of technical lignins in a liquid-phase reaction, Proceedings of 7th International Symposium of Wood and Pulping Chemistry, Vol. II. (Beijing), pp. 975–983.Google Scholar
  89. Ramirez-Cano, F., Ramos-Quirarte, A., Faix, O., Meier, D., Gonzalez-Alvarez, V., and Zuniga-Partida, V., 2001, Slow-release effect of N-functionalized kraft lignin tested with Sorghum over two growth periods, Bioresource Technology 76 pp. 71–73.PubMedCrossRefGoogle Scholar
  90. Rautavaara, T., Die Verwendung von Sulfitablauge für die Bodenverbesserung und Düngemittelherstellung, in: Verwertungsgebiete für Sulfitablauge, F. Me1ms, K. Schwenzon, Hrsg., VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1967, pp. 228–238.Google Scholar
  91. Sapotnitskii, S. A., 1981, Utilization of Spent Sulfite Liquors, Lesnaya Promyshlennost, Moskva, Chapter 5.7. Modification, pp. 144–152 (Russ).Google Scholar
  92. Schiene, R., Pruzina, K.-D., Wienhaus, O., and Fischer, F., 1979, Über die oxidative Ammonolyse von Sulfitablauge (I). Zellst. Pap. (Leipzig) 28(4), pp. 163–166.Google Scholar
  93. Schiene, R., Miletzky, F., Fischer, F., and Alber, W., 1985, Verfahren und Anlage zur Herstellung von Zwischenprodukten aus Sulfitablauge, DDR Patent 235 250 Al.Google Scholar
  94. Schiene, R., Miletzky, F., Fischer, K., Krusche, K., Zier, N., and Götze, T., 1992, Chemical modification of Organosolv lignins, Proceedings of 2 nd European Workshop on Lignocellulosics and Pulp (Grenoble), pp. 237–238.Google Scholar
  95. Schiene, R., Scheller, D., and Fischer, K., 1996, Unpublished results.Google Scholar
  96. Schnitzer, M., and Khan, S. U., 1972, Humic Substances in the Environment, Marcel Dekker, Inc., New YorkGoogle Scholar
  97. Schnitzer, M., and Khan, S. U., 1978, Soil Organic Matter, Elsevier Scientific Publishing Company, Amsterdam-Oxford-New YorkGoogle Scholar
  98. Schnitzer, M., 1985, in: Humic Substances in Soil, Sediment and Water, Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P. (eds.), John Wiley & Sons, New York, pp. 303–325.Google Scholar
  99. Scholl, W., and Davis, R. O. E., 1933, Ammoniation of peat for fertilizers, Ind. Eng. Chem. 25, pp. 1074–1078.CrossRefGoogle Scholar
  100. Schulten, H.-R., and Schnitzer, M., 1998, The chemistry of soil organic nitrogen: a review, Biol Fertil Soils 26 pp. 1–15.CrossRefGoogle Scholar
  101. Söchtig, H., and Flaig, W., 1973, Herstellung und Wirkung eines organischen Stickstoffdüngers aus Sulfitablaugen der Zellstoffindustrie, Landwirtschaftliche Forschung, 30/II. Sonderheft, Stand und Leistung agrikulturchemischer und agrarbiologischer Forschung, XXVII, pp. 17–24.Google Scholar
  102. Stevenson, F. J., 1982, Humus Chemistry - Genesis, Composition, Reactions, Wiley, New York.Google Scholar
  103. Sulan, S., Krkoska, P., Borisek, R., and Viluda, J., 1975, Oxidative ammonolysis of sulfite lignin, Pap. Celui. 30(3), pp. 68–70 (Czech).Google Scholar
  104. Sulan, S., Viluda, J., and Krkoska, P., 1978, Effect of reducing agents on the oxidative ammonolysis of sulfite spent liquor, Pap. Celui. 33(5), pp. V39–V41 (Czech).Google Scholar
  105. Suvorov, B. V., Rafikov, S. R., and Kagarlitskii, A. D., 1965, The oxidative ammonolysis of organic compounds, Uspekhi khimii 34(9), pp. 1526–1549 (Russ).Google Scholar
  106. Varela, G., Vidrio, E., Delgado, E., Ramos, J., Zuniga, V., Lopez-Dellamary, F., Ramirez, F., Gonzalez, V., Faix, 0., and Meier, D., 1999, 15N-Functionalization of kraft lignin and ist characterization by FTIR, Py-GC-MS and NMR, Proceedings of 10 th International Symposium of Wood and Pulping Chemistry, Vail (Yokohama), pp. 178–181.Google Scholar
  107. Wiesner, P., 1971, Organischer Stickstoffdünger N-Lignin, ein wertvolles Depot-Düngemittel, Wochenblatt für Papierfabrikation 99 pp. 740–743.Google Scholar
  108. Zakis, G. F., Neiberte, B. Ya., and Sergeeva, V. N., 1973a, Effect of persulfates on lignin II. Nitrogen fixation by lignin in the oxidation by persulfate in an ammonia medium. Khim. Drev. 13, pp. 85–92 (Russ).Google Scholar
  109. Zakis, G. F., and Neiberte, B. Ya., 1973b, Effect of persulfates on lignin III. Identification of the bond type of readily cleavable nitrogen in N-containing oxidized lignin by high-frequency conductometry, Khim. Drev. 13, pp. 93–100 (Russ).Google Scholar
  110. Zakis, G. F., Neiberte, B. Ya., Sergeeva, V. N., and Melke, A. A., 1974, Effect of persulfates on lignin V. Characterization of N-containing oxidized lignin, Khim. Drev. 15, pp. 115–125 (Russ).Google Scholar
  111. Zakis, G. F., Neiberte, B. Ya., and Sergeeva, V. N., 1976, Oxidation of lignin by an air/ammonia mixture at elevated temperature, Khim. Drev. (4), pp. 86–90 (Russ).Google Scholar
  112. Zakis, G F., and Neiberte, B. Ya., 1978a, Formation of N-containing derivatives by simultaneous action of ammonia and oxidant on lignin, Khim. Drev. (6), pp. 3–18 (Russ).Google Scholar
  113. Zakis, G. F., and Neiberte, B. Ya., 1978b, Study of nitrogen-containing polymers obtained while treating lignin and simple phenols with a persulfate-ammonia solution, II. Alkylation of the N atom, Khim. Drev. (6), pp. 82–86 (Russ).Google Scholar
  114. Zhuo, S., Wen, Q., Du, L., and Wu, S., 1992, The nitrogen form of non-hydrolyzable residue of humic acid, Chin. Sci. Bull. 37 pp. 508–511.Google Scholar
  115. Zier, N., 1996, Strukturelle Merkmale eines Organosolv-Lignins bei Variation der Aufschlußparameter, Dissertation Technische Universität Dresden. Google Scholar
  116. Zier, N., Schiene, R., and Fischer, K., 1997, Structural characterization of an Organosolv lignin by analytical pyrolysis and wet chemical degradation methods, J. Anal. Appt Pyrolysis 40–41 pp. 525–541.CrossRefGoogle Scholar
  117. Zuniga P.V., Martinez, A. de J., Delgado, E., Camacho, A., Gonzalez, V., and Allan, G., 1992, Ammoxidation of lignocellulosic materials in a fluidized bed reactor, Proceedings of 2 nd Workshop of Lignocellulosic and Pulp (Grenoble), Extended Papers, pp. 235–236.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Klaus Fischer
    • 1
  • Rainer Schiene
    • 1
  1. 1.Institute of Plant and Wood ChemistryDresden University of TechnologyTharandtGermany

Personalised recommendations