Skip to main content

Diffraction and Imaging of Ordered Semiconductors

Transmission Electron Microscopy Experiment and Theory

  • Chapter

Abstract

Transmission electron microscope diffraction and imaging of the ordered semiconductors Ga0.51n0.5P, Ga0.5In0.5As, and CuInSe2 are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Reimer, Transmission Electron Microscopy, Springer-Verlag, New York, 1984.

    Google Scholar 

  2. J. C. H. Spence, Experimental High-Resolution Electron Microscopy,2nd Ed., Oxford, New York, 1988.

    Google Scholar 

  3. S.-J. Kim, H. Asahi, M. Takemoto, K. Asami, M. Takeuchi, and S.-I. Gonda, Jpn. J. Appl. Phys., 33, (1996) 4225.

    Article  ADS  Google Scholar 

  4. B. PamplinProg. Crystal Growth Charact., 3, (1981) 179.

    Article  Google Scholar 

  5. S. Francoeur, G. A. Seryogin, S. A. Nikishin, and H. Temkin, Appl. Phys. Letters, 74, (1999) 3678.

    Article  ADS  Google Scholar 

  6. A. Rockett and R. W. Birkmire, J. Appl. Phys., 70, (1991) R81.

    Article  ADS  Google Scholar 

  7. C. RincOnPhys. Rev. B., 45, (1992) 12716.

    Article  ADS  Google Scholar 

  8. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York 1958.

    Google Scholar 

  9. C. B. WalkerJ. Appl. Phys., 23, (1952) 118.

    Article  ADS  Google Scholar 

  10. A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, I. Hino, and T. Yuasa, Appl. Phys. Letters, 50, (1987) 673.

    Article  ADS  Google Scholar 

  11. T. Y. Seong, A. G. Norman, G. R. Booker, and A. G. Cullis, J. Appl. Phys., 75, (1994) 12.

    Article  Google Scholar 

  12. Y.-E. Ihm, N. Otsuka, J. Klem, and H. Morkoc, Appl. Phys. Letters, 51, (1987) 2013.

    Article  ADS  Google Scholar 

  13. G. S. Chen, D. H. Jaw, and G. B. Stringfellow, J. Appl. Phys., 69, (1991) 4263.

    Article  ADS  Google Scholar 

  14. T. Suzuki, T. Ichihashi, and T. Nakayama, Appl. Phys. Letters, 73, (1998) 2588.

    Article  ADS  Google Scholar 

  15. S. Froyen and A. Zunger, Phys. Rev. Lett., 66, (1991) 2132.

    Article  ADS  Google Scholar 

  16. T. Suzuki and A. Gomyo, J. Crystal Growth, 111, (1991) 353.

    Article  ADS  Google Scholar 

  17. B. A. Philips, A. G. Norman, T. Y. Seong, S. Mahajan, G. R. Booker, M. Skowronski, J. P. Harbison, and V. G. Keramidas, J. Crystal Growth, 140, (1994) 249.

    Article  ADS  Google Scholar 

  18. C. Meenakam, A. E. Staton-Bevan, M. D. Dawson, G. Duggan, A. H. Kean, and S. P. Najda, Inst. Phys. Conf. Ser., 157, (1997) 265.

    Google Scholar 

  19. R. E. Smallman, W. Hume-Rothery, and C. W. Haworth, The Structures of Metals and Alloys,Institute of Metals, London, 1988.

    Google Scholar 

  20. T. S. Kuan, T. F. Kuech, W. I. Wang, and E. L. Wilkie, Appl. Phys. Letters, 54, (1985) 201.

    Article  Google Scholar 

  21. O. Ueda, Y. Nakata, T. Nakamura, and T. Fujii, J. Crystal Growth, 115, (1991) 375.

    Article  ADS  Google Scholar 

  22. D. S. Su, W. Neumann, R. Hunger, P. Schubert-Bischoff, M. Giersig, H. J. Lewerenz, R. Scheer, and E. Zeitler, Appl. Phys. Letters, 73, (1998) 785.

    Article  ADS  Google Scholar 

  23. H. R. Jen, M. J. Cherng, and G. B. Stringfellow, Appl. Phys. Letters, 48, (1986) 1603.

    Article  ADS  Google Scholar 

  24. S.-H. Wei, L. G. Ferreira, and A. Zunger, Phys. Rev. B, 41, (1990) 8240.

    Article  ADS  Google Scholar 

  25. C. J. Kiely, R. C. Pond, G. Kenshole, and A. Rockett, Phil. Mag. A, 63, (1991) 1249.

    Article  ADS  Google Scholar 

  26. J. R. Tuttle, Ph.D. Thesis, University of Colorado (1990).

    Google Scholar 

  27. D. J. Arent, M. H. Bode, K. A. Bertness, S. R. Kurtz, and J. M. Olson, Appl. Phys. Letters, 62, (1993) 1806.

    Article  ADS  Google Scholar 

  28. E. Morita, M. Ikeda, O. Kumagai, and K. Kaneko, Appl. Phys. Letters, 53, (1988) 2164.

    Article  ADS  Google Scholar 

  29. M. Ishimaru, S. Matsumura, N. Kuwano, and K. Oki, Phys. Rev. B, 52, (1995) 5154.

    Article  ADS  Google Scholar 

  30. C. S. Baxter, W. M. Stobbs, and J. H. Wilkie, J. Crystal Growth, 112, (1991) 373.

    Article  ADS  Google Scholar 

  31. C. S. Baxter and W. M. Stobbs, Phil. Mag. A, 69, (1994) 615.

    Article  ADS  Google Scholar 

  32. D. J. Friedman, J. G. Zhu, J. M. Olson, A. E. Kibbler, and J. Moreland, Appl. Phys. Letters, 63, (1993) 1774.

    Article  ADS  Google Scholar 

  33. L. C. Su, S. T. Pu, G. B. Stringfellow, J. Christen, H. Selber, and D. Bimberg, J. Electronic Materials, 23, (1994) 125.

    Article  ADS  Google Scholar 

  34. D. J. Friedman, G. S. Homer, S. R. Kurtz, K. A. Bertness, J. M. Olson, and J. Moreland, Appl. Phys. Letters, 65, (1994) 878.

    Article  ADS  Google Scholar 

  35. H. M. Cheong, A. Mascarenhas, S. P. Ahrenkiel, K. M. Jones, J. F. Geisz, and J. M. Olson, J. Appl. Phys., 89, (1998) 5418.

    Article  ADS  Google Scholar 

  36. L. C. Su, I. H. Ho, and G. B. Stringfellow, J. Appl. Phys., 75, (1994) 5135.

    Article  ADS  Google Scholar 

  37. L. Nasi, F. Fermi, C. Ferrari, L. Francesio, L. Lazzarini, C. Zanotti-Fregonara, S. Pellegrino, and G. Salviati, Inst. Phys. Conf. Ser., 157, (1997) 269.

    Google Scholar 

  38. L. C. Su and G. B. Stringfellow, J. Appl. Phys., 78, (1995) 6775.

    Article  ADS  Google Scholar 

  39. S. Takeda, Y. Kuno, N. Hosoi, and K. Shimoyama, J. Crystal Growth, 205, (1999) 11.

    Article  ADS  Google Scholar 

  40. W. H. Flannery and, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, Cambridge, New York, 1986.

    Google Scholar 

  41. J. M. Zuo and A. L. Weickenmeier, Ultramicro., 57, (1995) 375.

    Article  Google Scholar 

  42. P. A. Doyle and P. S. Turner, Acta Cryst., A 24 (1968) 390.

    Article  Google Scholar 

  43. G. Radi, Acta Cryst., A 26 (1970) 41.

    Article  Google Scholar 

  44. R. L. Forrest, T. D. Golding, S. C. Moss, Y. Zhang, J. F. Geisz, J. M. Olson, A. Mascarenhas, P. Ernst, and C. Geng, Phys. Rev. B, 58, (1998) 15355.

    Article  ADS  Google Scholar 

  45. S. Francoeur, G. A. Seryogin, S. A. Nikishin, and H. Temkin, Appl. Phys. Letters, 76, (1999) 2017.

    Article  ADS  Google Scholar 

  46. M. H. Bode, S. P. Ahrenkiel, S. R. Kurtz, K. A. Bertness, D. J. Arent, and J. M. Olson, Mat. Res. Soc. Symp. Proc., 417, (1996) 55.

    Article  Google Scholar 

  47. International Tables for Crystallography, Ed. T. Hahn, Kluwer Academic, Boston, 1996.

    Google Scholar 

  48. M. M. Treacy, J. M. Gibson, and A. Howie, Phil. Mag. A, 51, (1985) 389.

    Article  ADS  Google Scholar 

  49. J. P. Gowers, Appl. Phys. A, 34, (1984) 231.

    Article  ADS  Google Scholar 

  50. L. T. Romano, I. M. Robertson, J. E. Greene, and J. E. Sundgren, Phys. Rev. B, 36, (1987) 7523.

    Article  ADS  Google Scholar 

  51. G. Hahn, C. Geng, P. Ernst, H. Schweizer, and F. Scholz, Superlattices and Micro., 22 (1997) 301.

    Article  ADS  Google Scholar 

  52. U. Döff, H. Kalt, W. Send, D. Gerthsen, D. J. Mowbray, and C. C. Button, Appl. Phys. Letters, 73, (1998) 1679.

    Article  ADS  Google Scholar 

  53. U. Kops, R. G. Ulbrich, M. Burkard, C. Geng, F. Scholz, and M. Schweizer, Phys. Stat. Sol., 164, (1997) 459.

    Article  ADS  Google Scholar 

  54. R. M. Fisher and M. J. Marcinkowski, Phil. Mag., 6, (1961) 1385.

    Article  ADS  Google Scholar 

  55. P. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Electron, Microscopy of Thin Crystals,Krieger, Hungtington, 1977.

    Google Scholar 

  56. A. Howie and Z. S. Basinski, Phil. Mag., 17, (1968) 1039.

    Article  ADS  Google Scholar 

  57. D.B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Plenum, New York, 1996.

    Google Scholar 

  58. Y. Zhang, A. Mascarenhas, S. P. Ahrenkiel, D. J. Friedman, J. F. Geisz, and J. M. Olson, Solid State Comm., 109, (1999) 99.

    Article  Google Scholar 

  59. D. Munzar, E. Dobrcaa, I. Vavra, R. Kildela, M. Harvanka, and N. E. Christensen, Phys. Rev. B, 57, (1998) 4642.

    Article  ADS  Google Scholar 

  60. S.-H. Wei, S. B. Zhang, and A. Zunger, Phys. Rev. B, 59, (1999) R2478.

    Article  ADS  Google Scholar 

  61. T. Saβ, I. Pietzonka, and H. Schmidt, J. Appl. Phys., 85, (1999) 3561.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ahrenkiel, S.P. (2002). Diffraction and Imaging of Ordered Semiconductors. In: Mascarenhas, A. (eds) Spontaneous Ordering in Semiconductor Alloys. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0631-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0631-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5167-2

  • Online ISBN: 978-1-4615-0631-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics