Skip to main content

Application of Polyampholytes

  • Chapter
Polyampholytes

Abstract

Water-soluble and water-swelling polyampholytes are used in a wide number of applications including desalination of water, sewage treatment, flocculation, coagulation, drilling fluids, enhanced oil recovery etc. The desalination of water by crosslinked polyampholytes can be regulated by changing of the temperature.1 Such polyampholytes are called as thermoregenerable resins (TRR). To perform the thermoregeneration the next equilibrium should take place in dependence of temperature (Scheme 7.1). In principle the function of TRR is as follows: the absorbed at room temperature salts (for instance NaCl) can easily be regenerated by hot water, e.g. the exchange equlibrium is shifted at room temperature to the right and at high - to the left. At room temperature the proton is transferred from the acid to the base forming charged ion-exchanging zones (COOH → NR2 → COO- N+HR2). The heating of water from 298 K to 358 K leads to the accumulation of H+ and OH- owing to the ionization of water molecules; the concentration of H+ and OH- increases approximately 30 times. Hydrogen and hydroxyl ions suppress the degree of ionization of amphoteric resin and the equilibrium shifts to the left side. Thus hot water serves as “reservoir” of H+ and OH- ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. S. E. Kudaibergenov, Recent advances in the study of synthetic polyampholytes in solutions.Adv.Polym.Sci. 144, 115-197 (1999).

    Article  CAS  Google Scholar 

  2. M. Kamachi, M. Kurihara, and J. K Stille, Synthesis of block polymers for desalination membranes.Preparation of block copolymers of 2-vinylpyridine and methacrylic acid or acylic acid, Macromolecules 5,161-167 (1972).

    Article  CAS  Google Scholar 

  3. M. Kurihara, M. Kamachi, and J. K. Stille, Synthesis of ionic block polymers for desalination membranes, J.Polym.Sci. Part B: Polym. Phys. 11, 587-610 (1973).

    CAS  Google Scholar 

  4. H. Ito, M. Toda, K. Ohkoshi, M. Iwata, T. Fujimoto, Y. Miyaki, and T. Kataoka, Artificial membranes from multiblock copolymers. 6. Water and salt transports through a charge-mosaic membrane, Ind.Eng.Chem.Res. 27, 983-987 (1988).

    Article  CAS  Google Scholar 

  5. A. Elmidaoui, B. Bouyevin, S. Belcadi, and C. Gavach, Synthesis and characterization of an amphoteric ion-exchange membrane, J.Polym.Sci. Part B.Polym.Phys. 29, 705-713 (1991).

    Article  CAS  Google Scholar 

  6. K. Saito and A. Tanioka, Polyamphoteric membranes study: 1. Potentiometric behaviour of succinyl chitosan aqueous solution, Polymer 31, 5117-5122 (1996).

    Article  Google Scholar 

  7. S. E. Kudaibergenov and E. A. Bekturov, New properties of synthetic polyampholytes at the isoelectric point, Vestnik Acad. Nauk KazSSR 12,41-44 (1988).

    Google Scholar 

  8. N. J. Anderson, B. A. Bolto, R. J. Eldridge, and M. B. Jackson, Polyampholytes for water treatment with magnetic particles, Reactive Polym. 19, 87-95 (1993).

    Article  CAS  Google Scholar 

  9. Y. Watanabe, K. Kubo, and S. Sato, Application of amphoteric polyelectrolytes to sludge dewatering,Abstr. Intern Workshop on Polyelectrolytes, June 1-2, Inuyama, Japan, 1998, p.l.

    Google Scholar 

  10. L. M. Zhang, Modification of sodium carboxymethylcellulose by grafting of diallyldimethylammonium chloride, Macromol.Mater.Eng. 280-281(1), 66-70 (2000).

    Article  Google Scholar 

  11. S. E. Morgan and C. L. McCormick, Water-soluble copolymers 32. Macromolecular drag reduction, A review of predictive theories and the effects of polymer structure, Progr. Polym. Sct. 15(3), 507-549 (1989).

    Article  Google Scholar 

  12. C. L. McCormick, R. D. Hester, S. E. Morgan and A. M. Safieddine, Water-soluble copolymers. 31.Effects of molecular parameters, solvation, and polymer associations on drag reduction performance, Macromolecules, 23(8), 2132-2139(1990).

    Article  CAS  Google Scholar 

  13. C. L. McCormick, R. D. Hester, S. E. Morgan and A. M. Safieddine, Water-soluble copolymers. 30.Effects of molecular structure on drag reduction efficiency, Macromolecules, 23(8), 2124-2131 (1990).

    Article  CAS  Google Scholar 

  14. P. S. Mumick, P. M. Welch, and C. L. McCormick, Water soluble polyampholytes for the study of dragreduction, Polymer Preprints, 33(2), 337 (1992).

    CAS  Google Scholar 

  15. C. L. McCormick, R. D. Hester, S. E. Morgan, and P. S. Mumick, The effects of macromolecular structure and solvent ordering on drag reduction efficiency, Pacific Polymer Preprints, 1, 147 (1989).

    Google Scholar 

  16. P. S. Mumick, P. M. Welch, L. C. Salazar, and C. L. McCormick, Water soluble copolymers 56.Structure and solvation effects of polyampholytes in drag reduction, Macromolecules 27, 323-331 (1994).

    Article  CAS  Google Scholar 

  17. D. G. Peiffer, E. Brunswick, R. D. Lundberg, R. M. Kowalik, and S. R. Turner, Drag reduction agents for aqueous salt solutions, US Patent 4460758(1984).

    Google Scholar 

  18. D. G. Peiffer, E. Brunswick, R. M. Kowalik, and R. D. Lundberg, Drag reduction with novel hydrocarbon soluble polyampholytes, US Patent 4640945(1987).

    Google Scholar 

  19. J. J. Tsai, Polyampholytic polysaccharide graft copolymers neutrally charged, US Patent 5132284(1992).

    Google Scholar 

  20. J. J. Tsai, Method for thickening or stabilizing aqueous media with polyamphoteric polysaccharides, US Patent 5132285(1992).

    Google Scholar 

  21. L. M. Zhang, Inhibitive properties of amphoteric, water-soluble cellulosic polymers on bentonite swelling, Colloid Polym. Sci., 277, 282-284 (1999).

    Article  CAS  Google Scholar 

  22. X. Yin, L. Zhang, and Z. Li, Studies on new ampholytic cellulose derivative as clay-hydration inhibitor in oil field drilling fluid, J. Appl. Polym. Sci., 70, 921-926 (1998).

    Article  CAS  Google Scholar 

  23. S. Kawakami, S. Ura, N. Jinno, S. I. Isaoka, and W. Tohoma, Amphoteric polyelectrolyte, US Patent 4251651(1981).

    Google Scholar 

  24. I. Ahmed and H. L. Hsieh, Superabsorbent crosslinked ampholytic ion pair copolymers, US Patent 5075399, (1991).

    Google Scholar 

  25. I. Ahmed and H. L. Hsieh, Superabsorbent crosslinked ampholytic ion pair copolymers, US Patent 5130391,(1992).

    Google Scholar 

  26. I. Ahmed and H. L. Hsieh, Grafted copolymers highly absorbent to aqueous electrolyte solutions used in diapers and paper towels, US Patent 5331021(1994).

    Google Scholar 

  27. I. Ahmed and H. L. Hsieh, Grafted copolymers highly absorbent to aqueous electrolyte solutions, US Patent 5334685(1994).

    Google Scholar 

  28. H. L. Hsieh, Superabsorbent crosslinked ampholytic ion pair copolymers, US Patent 5354806, (1994).

    Google Scholar 

  29. D. G. Peiffer, R. D. Lundberg, and R. Turner, Intramolecular polymeric complexes - viscosifiers for acid, base and salt (aqueous) solutions, US Patent 4461884(1984).

    Google Scholar 

  30. D. G. Peiffer, R. D. Lundberg, I. Duvdevani, W. A. Thaler, Nonaqueous solvent soluble polyampholytes-viscosifier and shear thickening additive, US Patent 452015(1985).

    Google Scholar 

  31. D. G. Peiffer and R. D. Lundberg, High charge density polymeric complexes - viscosifiers for acid, base and salt (aqueous) solutions, US Patent 4608425(1986).

    Google Scholar 

  32. D. G. Peiffer and R. D. Lundberg, Novel polyampholyte compositions possessing high degrees of acid, base, or salt tolerance in solution, US Patent 4710555(1987).

    Google Scholar 

  33. D. G. Peiffer, R. D. Lundberg, L. P.Sedillo, and J. C. Newlove, Controlled hydraulic fracturing via nonaqueous solutions containing low charge density polyampholytes, US Patent 4739834(1988).

    Google Scholar 

  34. D. G. Peiffer and R. D. Lundberg, Polyampholyte compositions possessing high degree of acid, base, or salt tolerance in solution, US Patent 4946916(1990).

    Google Scholar 

  35. P. Kujawa, J. M. Rosiak, J. Selb, and F. Candau, Synthesis and properties of hydrophobically modified polyampholytes, Mol.Ctyst. and Liq.Cryst. 354, 401-407 (2000).

    Article  CAS  Google Scholar 

  36. P. Kujawa, J. M. Rosiak, J. Selb, and F. Candau, Micellar synthesis and properties of hydrophobically associating polyampholytes, Makromol.Chem.Phys. 202, 1384-1397 (2001).

    Article  CAS  Google Scholar 

  37. W. F. Lee and Y. M. Tu, Superabsorbent polymeric materials. VI. Effect of sulfobetaine structure on swelling behavior of crosslinked poly(sodium acrylate-co-sulfobetaines, J.Appl.Polym.Sci. 72, 1221-1232 (1999).

    Article  CAS  Google Scholar 

  38. W. F. Lee and Y. L. Huang Superabsorbent polymeric materials VII: Swelling behavior of crosslinked poly[sodium acrylate-co-trimethylmethacryloyloxyethyl ammonium iodide] in aqueous solutions, J.Appl.Polym.Sci. 77, 1749-1759 (2000).

    Article  CAS  Google Scholar 

  39. W. F. Lee and G. H. Lin, Superabsorbent polymeric materials VIII: Swelling behavior of crosslinked poly[sodium acrylate-co-trimethylmethacryloyloxyethyl ammonium iodide] in aqueous salt solutions, J.Appl.Polym.Sci. 79(9), 1665-1674 (2001).

    Article  CAS  Google Scholar 

  40. W. C. Chan, Using a water-insoluble amphoteric starch to simultaneously adsorb heavy metal ions/phenol from solutions, Polym. Int. 38, 319-323 (1995).

    Article  CAS  Google Scholar 

  41. S. E. Kudaibergenov, G. M. Zhaimina, and E.A. Bekturov, Recovery of transition metal ions by polyampholytes, Author certificate of the USSR 1086391(1983).

    Google Scholar 

  42. S. E. Kudaibergenov, G. M. Zhaimina, and E. A. Bekturov, Recovery of transition metal ions by polyampholytes, Author certificate of the USSR 1231810(1984).

    Google Scholar 

  43. S. E. Kudaibergenov, G. Khamitzhanova, L. A. Bimendina, Recovery of metal ions by linear and crosslinked polyampholytes, Abstr. Intern. Symp. “Macromolecule-metal complexes”, New York, August 2001.

    Google Scholar 

  44. S. E. Kudaibergenov, R. B. Koizhaiganova, A. G. Didukh, G. T. Zhumadilova, and L. A. Bimendina, Synthesis and characterization of novel betaine type polyampholytes, Abstr. 7th Pacific Polymer Conf. Microsymposium: Sensitive polymers and smart gels in honor of the late Prof Toyoichi Tanaka, 5-7 December Oaxaca, Mexico, 2001.

    Google Scholar 

  45. V. B. Sigitov, S. M. Koblanov, S. E. Kudaibergenov, Reports of Natl.Acad.Sci.Republic of Kazakhstan,2,72-74 (1997).

    Google Scholar 

  46. M. Bari, C. Kim, Water-soluble ampholytic polymers as oral controlled release carriers, Polym.Prepr. 41(2), 1630-1631 (2000).

    CAS  Google Scholar 

  47. S. Matsumura, E. Yokoshi, T. Winursito, and K. Toshima, Preparation of novel biodegradable polyampholyte - partially dicarboxylated chitosan, Chem.Lett. 3, 215-216 (1997).

    Article  Google Scholar 

  48. X. Peng and J. Shen, Water-soluble copolymers I. Biodegradability and functionality of poly[(sodiumacrylate)-co-(4-vinylpyridine)],J.Zppl.Polym.Sci. 71, 1953-1957 (1999).

    Article  CAS  Google Scholar 

  49. H. Sawada, M. Umedo, T. Kawaze, T. Tomita, and M. Baba, Synthesis and properties of fluoroalkylated end-capped betaine polymers, Eur.Polym.J. 35, 1611-1617 (1999).

    Article  CAS  Google Scholar 

  50. P. Ferruti, S. Manzoni, S. C. W. Richardson, R. Duncan, N. G. Patrick, R. Mendichi, and M. Casolaro, Amphoteric linear poly(amido-amine)s as endosomolytic polymers: Correlation between physicochemical and biological properties, Macromolecules, 33, 7793-7800 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kudaibergenov, S.E. (2002). Application of Polyampholytes. In: Polyampholytes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0627-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0627-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5165-8

  • Online ISBN: 978-1-4615-0627-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics