Synthesis of Linear and Crosslinked Polyampholytes

  • Sarkyt E. Kudaibergenov

Abstract

A renewed interest for polyampholytes is due to appearance of some novel methods of synthesis based on the radical and emulsion polymerization of charged anionic and cationic monomers or ion-pair comonomers, betaine type or zwitterionic monomers together with well-known living polymerization, group transfer polymerization, polycondensation and chemical modification technique. This chapter considers the synthetic strategy of “annealed”, “quenched” and “zwitterionic” polyampholytes having random, alternating, graft, branched, di-block or tri-block sequences.

Keywords

Surfactant Hydrolysis Macromolecule Carboxymethyl Imino 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    T. Alfrey, H. Morawetz, E. B. Fitzgerald, and R. M. Fuoss, Synthetic electrical analog of proteins,J.Am.Chem.Soc. 72, 1864(1950).Google Scholar
  2. 2.
    T. Alfrey and H. Morawetz, Amphoteric polyelectrolytes. I. 2-Vinylpyridine-methacrylic acid copolymers,J.Am.Chem.Soc. 74, 436-438 (1952).Google Scholar
  3. 3.
    T. Alfrey, R. M. Fuoss, H. Morawetz, and H. Pinner, Amphoteric polyelectrolytes. II. Copolymers of methacrylic acid and diethylam inoethyl methacrylate,J.Am.Chem.Soc. 74, 438-441 (1952).Google Scholar
  4. 4.
    A. Katchalsky, I. R. Miller, Polyampholytes,J.Polym.Sci. 13, 57-68 (1954).Google Scholar
  5. 5.
    V. A. Kabanov and D. A. Topchiev,Polymerization of Ionizing Monomers(in Russian) (Nauka,Moscow, 1978).Google Scholar
  6. 6.
    V. A. Kabanov, V. P. Zubov, and Yu. D. SemchikovComplex-Radical Polymerization(in Russian), (Khimiya, Moscow, 1987).Google Scholar
  7. 7.
    I. V. Savinova, V. P. Zubov, and V. A. Kabanov, Peculiarities of radical copolymerization of interacting monomers. Copolymerization of 2-methyl-5-vinylpyridine and 2-vinylpyridine with acrylic acid,Vysokomolek.Soedin.Ser.A,15, 1666-1670(1973).Google Scholar
  8. 8.
    F. R. Mayo and F. M. Lewis, Copolymerization. I. A basis for comparing the behavior of monomers in copolymerization: The copolymerization of styrene and methylmethacrylate,J.Amer.Chem.Soc. 66, 1594-1601 (1944).Google Scholar
  9. 9.
    S. Masuda, K. Minagawa, M. Tsuda, and M. Tanaka, Spontaneous copolymerization of AA and 4VP and microscopic acid dissociation of the alternating copolymer,Eur. Polym.J. 37(4), 705-710 (2001).Google Scholar
  10. 10.
    O. Sh. Kurmanaliev, E. M. Shaikhutdinov, Sh. S. Tulbaev, and T. M. Mukhametkaliev, Influence of water on radical copolymerization of 1,2,5-trimethyl-4-vinylethynylpiperidinol-4 with methacrylic acid,Vysokomolek. Soedin. Ser B,22, 526-528 (1980).Google Scholar
  11. 11.
    O. Sh. Kurmanaliev, E. M. Shaikhutdinov, L. M. Sugralina, and M. E. Ermagambetov, Investigation of radical copolymerization of N-methylvinylethynylpiperidinol-4 with methacrylic acid, Izv.Akad.Nauk KazSSR, Ser.Khim. 4, 75-78 (1987).Google Scholar
  12. 12.
    E. M. Shaikhutdinov, O. Sh. Kurmanaliev, and M. E. Ermagambetov, Soluble polyelectrolytes based on some heterocyclic compounds,Macromol.Chem.Macromol.Symp. 26, 297-311 (1989).Google Scholar
  13. 13.
    M. E. Ermagambetov, Sh. S. Tulbaev, O. Sh. Kurmanaliev, E. M. Shaikhutdinov, B. A. Zhubanov, E. A. Bekturov, and S. E. Kudaibergenov, Synthesis and physico-chemical properties of polymers based on vinylethynylpiperidinols,Proc.Inst.Chem.Sci. Kazakh Acad.Sci. 66, 102-141 (1986).Google Scholar
  14. 14.
    J. Furukawa, E. Kobayashi, and T. Doi, Alternating polyampholytes prepared by hydrolysis of copolymer of maleic anhydride and N-vinylsuccinimide,J.Polym.Sci.Polym.Chem.Ed. 17, 255-266 (1979).Google Scholar
  15. 15.
    M. Hahn, W. Jaeger, R. Schmolke, and J. Behnisch, Synthesis of regular polyampholytes by copolymerization of maleic acid with allyl and diallyl amine derivatives,Acta Polymerica 41, 107-112 (1990).Google Scholar
  16. 16.
    W. Jaeger, M. Hahn, A. Lieske, A. Zimmerman, and F. Brand, Polymerization of water soluble cationic vinyl monomers,Macromol. Symp. lll, 95-106 (1996).Google Scholar
  17. 17.
    E. I. Ablyakimov and R. K. Gavurina, Polymerization of fumarate of N,N-diethylaminoethylmethacrylate,Vysokomol.Soed. Ser.B. 12, 1464-1468 (1970).Google Scholar
  18. 18.
    B. L. Rivas, G. S. Canessa, and S. A. Pooley, Copolymerization via zwitterion. 10. Copolymerization of 2-ethyl-2-oxazoline and acrylic acid,Eur. Polym. J. 25, 225-230 (1989).Google Scholar
  19. 19.
    T. Alfrey Jr, C. G. Overberger, and S. H. Pinner, Copolymerization behavior of ionizable monomers,J.Am.Chem.Soc. 75, 4221-4223 (1953).Google Scholar
  20. 20.
    R. A. Novolokina, V. A. Sineokov, L. I. Abramova, and S. M. Danov, Synthesis of polyampholytes copolymerization of N-(3-dimethylamino-l,l-dimethylpropyl)acrylam:de with methacrylic acid,Vysokomol. Soedin., Ser. A Ser. B,37, 299-301 (1995).Google Scholar
  21. 21.
    S. Wen and W. T. K. Stevenson, Synthetic pH sensitive polyampholyte hydrogels: A preliminary study,Colloid Polym.Sci. 271, 38-49 (1993).Google Scholar
  22. 22.
    Yu. V. Tanchuk, B. M. Yablonko, and B. M. Boiko, Synthesis of graft polyampholytes and anomalous temperature dependence of viscosity in aqueous solution,Ukr.Khim.Zh. 48(8), 871-876 (1982).Google Scholar
  23. 23.
    Y. Merle, L. Merle-Aubry, and E. Selegny, Synthetic polyampholytes 1. Preparation and solution properties, in:Polymeric amines and ammonium salts, edited by E.J. Goethals (Pergamon Press, Oxford, 1980) pp.113-124.Google Scholar
  24. 24.
    L. Merle and Y. Merle, Synthetic polyampholytes 2. Sequence distribution in methacrylic acid- (dimethylamino)ethyl methacrylate copolymers byl3C NMR spectroscopy,Macromolecules 15, 360-366(1982).Google Scholar
  25. 25.
    T. Kelen and F. Tudos, Analysis of the linear methods for determining copolymerization reactivity ratios. I. New improved linear graphic method,J.Macromol.Sci.Chem. A9, 1-27 (1975).Google Scholar
  26. 26.
    M. Fineman and S. D Ross, Linear method for determining monomer reactivity ratios in copolymerization,J.Polym.Sci. 5, 259-262 (1950).Google Scholar
  27. 27.
    V. S. Lebedev and R. K. Gavurina, Preparation and properties of amphoteric copolymer of fumaric acidand 2-methyl-5-vinylpyridine,Vysokomolek.Soedin. 6, 1161-1166 (1964).Google Scholar
  28. 28.
    V. S. Lebedev, N. N. Loginova, and R. K. Gavurina, Effect of the cis-and trans-configurations of ethylene-l,2-dicarboxylic acids on the properties of their copolymers with 2-methyl-5-vinylpyridine,Vysokomol.Soedin. 6, 1174-1180 (1964).Google Scholar
  29. 29.
    A. A. Kim, D. E. Bayakhmedova, and U. N. Musaev, Synthesis of polyampholyte containing alkaloid lupinine and its physico-chemical properties,Vysokomol.Soedin. Ser.B 27, 47-50 (1985).Google Scholar
  30. 30.
    G. van Paesschen and G. Smets, Copolymeres ordinaires et copolymeres greffes, structure de polyampholytes et interactions acide-base,Bull.Soc.Chim.Beige 64, 173-188 (1955).Google Scholar
  31. 31.
    M. Kamachi, M. Kurihara, and J. K. Stille, Synthesis of block polymers for desalination membranes. Preparation of block copolymers of 2-vinylpyridine and methacrylic acid or acylic acid,Macromolecules 5, 161 -167 (1972).Google Scholar
  32. 32.
    M. Kurihara, M. Kamachi, and J. K. Stille, Synthesis of ionic block polymers for desalination membranes,J.Polym.Sci. Part B: Polym. Phys. 11, 587-610 (1973).Google Scholar
  33. 33.
    R. C. Schulz, M. Schmidt, E. Schwarzenbach, J. Zoller, Some new polyelectrolytes,Macromol. Chem. Macromol.Symp. 26, 221 -231 (1989).Google Scholar
  34. 34.
    C. S. Patrickios, W. R. Hertler, N. L. Abbot, and T. A. Hatton, Diblock, ABC triblock, and random methacrylic polyampholytes: Synthesis by group transfer polymerization and solution behavior,Macromolecules 27, 930-937 (1994).Google Scholar
  35. 35.
    K. Suyama, S. Yamaguchi, M. Shirai, and M. Tsunooka, Image formation by dyeing of copolymers bearing photogenerated acid and base groups with dye bath containing acid and basic dyes,J.Polym.Sci.Polym.Chem. 38, 3043-3051 (2000).Google Scholar
  36. 36.
    T. Siyam and Z. H. Abd-EIatif, Gamma radiation-induced preparation of poly(dimethylaminoethyl methacrylate-acrylamide-acrylic acid) as exchanger.J.Macromol.Sci.Part A: Pure Appl.Chem. 36(3), 417-428(1999).Google Scholar
  37. 37.
    F. Candau, Recent developments in microemulsion copolymerization,Macromol. Symp. 92, 169-178(1995).Google Scholar
  38. 38.
    F. Candau and J. F. Joanny, Polyampholytes (Properties in aqueous solution), in:Polymeric Materials Encyclopedia, edited by J. C. Salamone (CRC Press Boca Raton, New York, 1996), pp.5476-5488.Google Scholar
  39. 39.
    J. C. Salamone, C. C. Tsai, A. C. Watterson and, A. P. Olson, Novel ampholytic polymers. A new class of ionomer, in:Polymeric Amine and Ammonium Salts, (Pergamon Press, Oxford, 1980) pp. 105-112.Google Scholar
  40. 40.
    J. C. Salamone, A. C. Watterson, T. D. Hsu, C. C. Tsai, and M. U. Mahmud, Polymerization of vinylpyridinium salts. IX. Preparation of monomeric salt pairs,J.Polym.Sci.Polym.Lett.Ed. 15, 487-491 (1977).Google Scholar
  41. 41.
    J. C. Salamone and W. C. Rice, in:Encycl. of Polym.Sci. Eng.edited by H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges (Wiley, New York, 1987) pp.514-Google Scholar
  42. 42.
    J. H. Yang and M. S. Jhon, The conformation and dynamics study of amphoteric copolymers, P(sodium-2- methacryloyloxyethanesulfonate-co-2-methacryloyloxyethyltrimethylammonium iodide), using viscometry, l4N-, and 23Na-NMR,J.Polym.Sci.Part A: Polym.Chem. 33, 2613-2621 (1995).Google Scholar
  43. 43.
    J. M. Corpart and F. Candau, Formulation and polymerization of microemulsions containing a mixture of cationic and anionic monomers,Colloid Polym Sci. 271, 1055-1067 (1993).Google Scholar
  44. 44.
    J. M. Corpart and F. Candau, Characterization of high charge density ampholytic copolymers prepared by microemulsion polymerization,Polymer 34(8), 3873-3886 (1993).Google Scholar
  45. 45.
    A. Ohlemacher, F. Candau, J. P. Munch, and S. J. Candau, Aqueous solution properties of polyampholytes: Effect of net charge distribution,J.Polym.Sci.Part B: Polym.Phys. 34, 2747-2757 (1996).Google Scholar
  46. 46.
    P. W. Tidwell and G. A. Mortimer, An improved method of calculating copolymerization reactivity ratios,J.Polym.Sci. A3, 369-387 (1965).Google Scholar
  47. 47.
    P. W. Tidwell and G. A. Mortimer, Science of determining copolymerization reactivity ratios,J.Macromol.Sci.Rev. C4, 281-312 (1970).Google Scholar
  48. 48.
    O. Braun, J. Selb and F. Candau, Synthesis in microemulsion and characterizaion of stimuli-responsive polyelectrolytes and polyampholytes based on N-isopropylacrylamide,Polymer 42(21), 8499-8510 (2001).Google Scholar
  49. 49.
    P. Kujawa, J. M. Rosiak, J. Selb, and F. Candau, Micellar synthesis and properties of hydrophobically associating polyampholytes,Makromol.Chem.Phys.202, 1384-1397 (2001).Google Scholar
  50. 50.
    X. Ge, M. Sheng, Q. Ye, X. Xu, and Z. Zhang, Ampholytic terpolymers of acrylamide with sodium acrylate and (2-methacryloyloxyethyl)trimethylammonium chloride. Synthesis with60Co gamma-ray and polymerization kinetics,Polym. J. (Tokyo) 31, 1243-1246 (1999).Google Scholar
  51. 51.
    K. W. Hampton and W.T. Ford, Synthesis of polyampholyte microgels,Polym.Prepr. 39, 650-651 (1998).Google Scholar
  52. 52.
    H. P. Gregor, D. H Gold, and G. K. Hoeschele, A new synthetic polyampholyte - poly-N-ethyleneglyc:ne. Synthesis, potentiometric titration, viscosity and electrophoretic mobility,J. Amer.Chem.Soc.11, 4743-4745 (1955).Google Scholar
  53. 53.
    T. A. Asonova, E. F. Razvadovskii, A. B. Zezin, and V. A. Kargin, Synthesis and polymerization of betaine ß-[N,N-dimethyl-N-(ß-ethylmethacrylate)] of aminopropionic acid,Dokl.Akad.Nauk SSSR 188, 583-586 (1969).Google Scholar
  54. 54.
    J. C. Salamone, A. C. Watterson, T. D. Hsu, C. C. Tsai, M. U. Mahmud, A. W. Wisniewski, and S. C. Israel, Polymerization of vinylpyridinium salts. X. Copolymerization studies of cationic-anionic monomer pairs,J. Polym.Sci.Polym.Symp. 64, 229-243 (1978).Google Scholar
  55. 55.
    J. C. Salamone, E. A. Rodrigues, K. C. Lin, L. Quach, and A. C. Watterson, Aqueous salt absorption by ampholytic polysaccharides,Polymer,26, 1234-1238 (1985).Google Scholar
  56. 56.
    J. C. Salamone, C. C. Tsai, A. P. Olson, and A. C. Watterson, Ampholytic polystyrene ionomers from cationic-anionic monomer pairs,J. Polym.Sci.Polym. Chem.Ed. 18, 2983-2992 (1980).Google Scholar
  57. 57.
    J. C. Salamone, I. Ahmed, E. L. Rodriguez, L. Quach, and A. C. Watterson, Synthesis and solution properties of ampholytic acrylamide ionomers,J.Macromol Sci. Chem,25, 811-837 (1988).Google Scholar
  58. 58.
    D. A. Topchiev, R. A. Mkrtchan, R. A. Simonyan, M. V. Lachinov, and V. A. Kabanov, Radical polymerization of ß-[N,N-dimethyl-N-(ß-methacryloyloxyethyl)] propiobetaine in aqueous solution,Vysokomolek,Soedin. Ser.A: 19, 506-512 (1977).Google Scholar
  59. 59.
    H. Ladenheim and H. Morawetz, A new type of polyampholyte: poly(4-vinylpyridine betaine),J. Polym.Sci. 26, 251-254 (1957).Google Scholar
  60. 60.
    J. Bohrisch, U. Wendler, and W. Jaeger, Controlled radical polymerization of 4-vinylpyridine,Macromol.Rapid Commun. 18, 975-982 (1997).Google Scholar
  61. 61.
    W. Jaeger, U. Wendler, A. Lieske, and J. Bohrisch, Novel modified polymers with permanent cationic groups,Langmuir 15, 4026-4032 (1999).Google Scholar
  62. 62.
    A. B. Lowe, N. C. Billingham, and S. P. Armes, Synthesis of polybetaines with narrow molecular mass distribution and controlled architecture,J. Chem.Soc.Chem.Commun. 13, 1555-1556 (1996).Google Scholar
  63. 63.
    S. A. Ali, A. Rasheed, M. I. Wazeer, Synthesis and solution properties of a quarternary ammonium polyampholyte,Polymer 40, 2439-2446 (1999).Google Scholar
  64. 64.
    D-J. Liaw, J-R. Lin, and K-C. Chung, Determination of the Absolute Rate Constants in Free-Radical Polymerization of Zwitterionic Sulfobetaine Monomers,J.Macromoi.Sci.Pure Appl.Chem. A3O(l), 51-58(1993).Google Scholar
  65. 65.
    J. B. Lee, P. G.Petrov, and H. G.Dobereiner, Curvature of zwitterionic membranes in transverse pH gradients,Langmuir,15, 8543-8546 (1999).Google Scholar
  66. 66.
    E. E. Kathmann, L. A. White, and C. L. McCormick, Water-soluble polymers 69. pH- and electrolyte- responsive copolymers of acrylamide and the zwitterionic monomer 4-(2-acrylamido-2-methyl propyldimethylammonio) butanoate: Synthesis and solution behavior,Polymer 38(4), 871-878 (1997).Google Scholar
  67. 67.
    E. E. Kathmann and C. L. McCormick, Water-soluble polymers 71. pH Responsive behavior of terpolymers of sodium acrylate, acrylamide, and the zwitterionic monomer 4-(2-acrylamido-2-methylpropane-dimethylammonio) butanoate,J. Polym. Sci. Chem. 35, 231-242 (1997).Google Scholar
  68. 68.
    E. E. Kathmann and C. L. McCormick, Water-soluble polymers 72. Synthesis and solution behavior of responsive copolymers of acrylamide and the zwitterionic monomer 6-(2-acrylamido-2-methylpropyl-dimethylammonio) hexanoate,J. Polym. Sci. Chem. 35, 243-253 (1997).Google Scholar
  69. 69.
    C. L. McCormick and L. C. Salazar, Water soluble copolymers 46. Hydrophilic sulfobetaine copolymers of acrylamide and 3-(2-acrylamido-2-methylpropanedimethylammodio)-l-propanesulfonate,Polymer,33(21), 4617-4624 (1992).Google Scholar
  70. 70.
    U. Wendler, J. Bohrisch, W. Jaeger, G. Rother, and H. Dautzenberg, Amphiphilic cationic block copolymers via controlled free radical polymerization,Macromol.Rapid Commun. 19, 185-192 (1998).Google Scholar
  71. 71.
    W. Jaeger, U. Wendler, A. Lieske, and J. Bohrisch, Novel modified polymers with permanent cationic groups,Langmuir 15, 4026-4032 (1999).Google Scholar
  72. 72.
    R. S. Armentrout and C. L. McCormick, The synthesis and solution behavior of pH-responsive cyclocopolymers containing sulfobetaine monomers,Polym.Prepr. 40(2), 193-194 (1999).Google Scholar
  73. 73.
    D. B. Thomas, R. S. Armentrout and C. L. McCormick, The synthesis and characterization of responsive zwitterionic cyclopolymers containing a novel carboxybetaine monomer,Polym.Prepr. 40(2), 275-276 (1999).Google Scholar
  74. 74.
    R. S. Armentrout and C. L. McCormick, Water-soluble polymers. 76. Electrolyte responsive cyclopolymers with sulfobetaine units exhibiting polyelectrolyte or polyampholyte behavior in aqueous media,Macromolecules 33, 419-424 (2000).Google Scholar
  75. 75.
    C. L. McCormick and R. S. Armentrout, The synthesis and solution behavior of zwitterionic cyclopolymers containing novel sulfobetaine monomer,Polym.Prepr. 39(1), 617-618 (1998).Google Scholar
  76. 76.
    J. J. Kaladas, R. Kastrup and D. N. Schultz, Poly(cyclosulfobetaines): Synthesis, characterization, and solution properties,Polym.Prepr. 39(1), 619-620 (1998).Google Scholar
  77. 77.
    P. Favresse and A. Laschewsky, New poly(carbobetaine)s made from zwitterionic diallylammonium monomers,Macromol.Chem.Phys. 200, 887-895 (1999).Google Scholar
  78. 78.
    M. M. Ali, H. P. Perzanowski, and Sk. A. Ali, Polymerization of functionalized diallyl quaternary ammonium salt to poly(ampholyte-electrolyte),Polymer 41, 5591-5600 (2000).Google Scholar
  79. 79.
    S. E. Kudaibergenov and R. B. Koizhaiganova, Synthesis and characterization of novel betaine type polyampholytes,Abstr. Polymer Processing Symposium, October 22-24, 2001, Antalya, Turkey.Google Scholar
  80. 80.
    A. T. Mirzaev, U. K. Akhmedov, and A. I. Apazidi, Potentiometric titration of aqueous solution of polyampholyte,Uzb. Khim Zh. 6, 76-78 (1980).Google Scholar
  81. 81.
    G. Smets and C. Samyn, Synthesis, ring opening study and properties of some new polyampholytes from substituted aziridines, in:Optically Active Polymers, edited by E. Selegny (D. Reidel Publ.Co., Dordrecht-Boston, 1979), pp.331-344.Google Scholar
  82. 82.
    O. C. Dermr and G. E. Ham,Ethyleneimine and other Aziridines(Acad.Press, New York, 1969).Google Scholar
  83. 83.
    R. Kishi, T. Sato, R. Yosomiya, and H. Ichijo, Preparation and properties of novel thermo-responsive polymer carrying amino acid residue,Prepr. IUPAC Intern. Symp. on Macromol.P.364 (1998).Google Scholar
  84. 84.
    B. Grassl and J. C. Galin, Segmented Poly (tetramethylene oxide) zwitterionomers and their homologous ionenes. 1. Synthesis, molecular characterization, and thermal stability,Macromolecules28, 7035-7045(1995).Google Scholar
  85. 85.
    B. Grassl, B. Meurer, M. Scheer, and J. C. Galin, Segmented poly(tetramethylene oxide) zwitterionomers and their homologous ionenes. 3. Structural study through SAXS and SANS measurements,Macromolecules 30, 2075-2084 (1997).Google Scholar
  86. 86.
    V. M. Monroy-Sato and J. C. Galin, Poly (sulfopropylbetaines). 1. Synthesis and characterization,Polymer 25, 121-128(1984).Google Scholar
  87. 87.
    A. Laschewsky and I. Zerbe, Polymerizable and polymeric zwitterionic surfactants. 1. Synthesis and bulk properties,Polymer 32, 2070-2080 (1991).Google Scholar
  88. 88.
    A. Laschewsky and I. Zerbe, Polymerizable and polymeric zwitterionic surfactants. 2. Surface activity and aggregation behaviour in aqueous systems,Polymer 32, 2081-2086 (1991).Google Scholar
  89. 89.
    P. Anton and A. Laschewsky, Polysoaps via alternating olefin/S02copolymers,Makromol.Chem.Rapid Commun. 12, 189-196 (1991).Google Scholar
  90. 90.
    A. Laschewsky, Oligoethyleneoxide spacer groups in polymerizable surfactantsColloid.Polym.Sci. 269, 785-794 (1991).Google Scholar
  91. 91.
    P. Anton and A. Laschewsky, Zwitterionic polysoaps with reduced density of surfactant side groups,Makromol.Chem. 194, 601-624 (1993).Google Scholar
  92. 92.
    P. Anton, P. Koberle, and A. Laschewsky, Recent developments in the field of micellar polymers,Makromol.Chem. 194, 1-27 (1993).Google Scholar
  93. 93.
    N. Bonte and A. Laschewsky, Zwitterionic polymers with carbobetaine moieties,Polymer 37, 2011-2019 (1996).Google Scholar
  94. 94.
    P. Favresse and A. Laschewsky, New poly (carbobetaine)s made from zwitterionic diallylammonium monomers,Macromol.Chem.Phys. 200, 887-895 (1999).Google Scholar
  95. 95.
    P. Favresse and A. Laschewsky, Synthesis and investigation of new amphiphilic poly(carbobetaine)s made from diallylammonium monomers,Polymer 42(7), 2755-2766 (2001).Google Scholar
  96. 96.
    P. Favresse, A. Laschewsky, C. Emmermann, L. Gros, and A. Linsner, Synthesis and free radical copolymerisation of new zwitterionic monomers: amphiphilic carbobetaines based on isobutylene,Eur.Polym.J. 37, 877-885 (2001).Google Scholar
  97. 97.
    P. Koberle, A. Laschewsky, and T. D. Lomax, Interaction of a zwitterionic polysoap and its cationic analog with inorganic salts,Makromol.Chem.Rapid Commun. 12, 427-430 (1991).Google Scholar
  98. 98.
    N. Hadjichristidis, S. Pispas, and M. Pitsikalis, End-functionalized polymers with zwitterionic end- groups.Prog.Polym.Sci. 24, 875-915 (1999).Google Scholar
  99. 99.
    H. Sawada, M. Umedo, T. Kawase, T. Tomita, and M. Baba, Synthesis and properties of fluoroalkylatedend-capped betaine polymers,Eur.Polym.J. 35, 1611-1617 (1999).Google Scholar
  100. 100.
    T. Nonaka and H. Egawa, Studies of polymeric flocculants XI. The preparation and properties of polyampholytes,Bull.Chem.Soc.Jpn. 53, 1632-1637 (1980).Google Scholar
  101. 101.
    M. A. Askarov, L. N. Semenova, and B. L. Gafurov, Synthesis of polyampholytes based on copolymer of ithaconic acid and styrene,Dokl.Akad. Nauk UzbSSR 1, 56-59 (1975).Google Scholar
  102. 102.
    G. S. Georgeiev, Properties of alternating polyampholyte obtained when the maleic anhydride and vinylpalmitic ester polymer interact with dimethyl formamide,Comptes Rendus de I'Academie Bulgare Sciences,31(12), 1613-1616(1978).Google Scholar
  103. 103.
    T. St. Pierre, E. A. Lewis, B. Williams, R. Andersen, The synthesis and solution properties of poly(vinylamine-co-acrylic acid),IUPAC Makro Mainz: 26th Intern.Symp. Macromol., Mainz, Prepr. Short Commun. 1, 515 (1979).Google Scholar
  104. 104.
    J. P. Allison and C. S. Marvel, Experiments with a synthetic polyampholyte,J. Polym.Sci. A3, 137-144 (1965).Google Scholar
  105. 105.
    S. A. Ali, A. Rasheed, M. I. Wazeer, Synthesis and solution properties of a quarternary ammonium polyampholyte,Polymer 40, 2439-2446 (1999).Google Scholar
  106. 106.
    E. E. Ergozhin, B. A. Mukhitdinova, and Z. K. Dusenbenova, Amphoteric polyelectrolytes based on poly-p-aminophenylene thiocyanate,React. Polym. 18(1), 15-23 (1992).Google Scholar
  107. 107.
    L. I. Tikhonova, O. I. Samoilova, E. F. Panarin, and V. G. Yashunskaya, High molecular weight complexons based on copolymers of vinylpyrrolidone and vinylamine,Vysokomolek.Soedin. Ser.B,15, 874-877(1973).Google Scholar
  108. 108.
    R. M. Z. Bhaskara and R. P. Santi, Synthesis and properties of polyampholytes,J. Polym.Sci.Polym.Symp. C22, 587-590 (1969).Google Scholar
  109. 109.
    Y. Tan, L. Zhang, and Z. Li, Synthesis and characterization of new amphoteric graft copolymer of sodium carboxymethyl cellulose with acrylamide and dimethylaminoethyl methacrylate,J. Appl.Polym.Sci. 69, 879-885 (1998).Google Scholar
  110. 110.
    L. M. Zhang, Modification of sodium carboxymethylcellulose by grafting of diallyidimethylammonium chloride,Macromol. Mater.Eng. 280-281(1), 66-70 (2000).Google Scholar
  111. 111.
    G-Z. Zheng, G. Meshitsuka, A. Ishizu, Inter- and intramolecular ionic interactions of polyampholyte: Carboxymethyl-2-diethylaminoethylcellulose,Polym.Intern. 34, 241-248 (1994).Google Scholar
  112. 112.
    R. A. A. Muzzarelli, F. Tanfani, S. Mariotti, and M. Emanuelli, N-(o-Carboxybenzyl)chitosans: novel chelating polyampholytes,Carbohydr.Polym. 2, 145-157 (1982).Google Scholar
  113. 113.
    R. A. A. Muzzarelli, Carboxymethylated chitins and chitosans,Carbohydr.Polym. 8, 1-21 (1988).Google Scholar
  114. 114.
    R. A. A. Muzzarelli, M. Weckx, O. Filippini, and C. Lough, Characteristic properties of N-carboxybutyl chitosan,Carbohydr.Polym. 11, 307-320 (1989).Google Scholar
  115. 115.
    R. A. A. Muzzarelli, in:Amphoteric Derivatives of Chitosan and their Biological Significance, edited by G. Skjak-Braek, T. Anthonsen, and P. Sandford (Elsevier Sci.Publ. London, 1989), p.189.Google Scholar
  116. 116.
    Waldo Arguelles-Monal, and Carlos Peniche-Covas, Preparation of a novel-polyampholyte from chitosan and citric acid,Macromol. Chem.Rapid Commun. 14, 735-740 (1993).Google Scholar
  117. 117.
    G. F. Payne, M. V. Chaubal, and T. A. Barbari, Enzyme-catalyzed polymer modification: reaction of phenolic compounds with chitosan films,Polymer 37, 4643-4648 (1996).Google Scholar
  118. 118.
    J. L. Lenhart, M. V. Chaubal, G. F. Payne, and T. A. Barbari, in:Enzymes in Polymer Synthesis, edited by R. A. Gross, D. L. Kaplan, and G. Swift (ACS, Washingon DC, 1998), pp. 188-198.Google Scholar
  119. 119.
    G. Kumar, P. J. Dmith, and G. F. Payne, Enzymatic grafting of a natural product onto chitosan to confer water solubility under basic conditions,Biotechn.Bioeng. 63, 154-165 (1999).Google Scholar
  120. 120.
    S. Asayama, M. Nogawa, Y. Takei, T. Akaike, and A. Maruyama, Synthesis of novel polyampholyte comb-type copolymers consisting of a poly(L-lysine) backbone and hyaluronic acid side chains for a DNA carrier,Bioconjug. Chem. 9, 476-481 (1998).Google Scholar
  121. 121.
    K. Suyama, M. Tsunooka, Photochemical gel formation by the use of polymers bearing both photobase generating groups and photoacid generating groups and their applications,J. Photopolymer Sci.Techn. 10(2), 299-302(1997).Google Scholar
  122. 122.
    M. Shirai, K. Suyama, and M. Tsunooka, Photoacid and photobase generation in photoresists,Trends in Photochemistry and Photobiology 5, 169-185 (1999).Google Scholar
  123. 123.
    B. Tieke, G. Wegner, Solid-state polymerization of 1,4-disubstituted trans,trans-butadienes in perovskite- type layer structures,Makromol. Chem.Rapid Commun. 2, 543-549 (1981).Google Scholar
  124. 124.
    B. Tieke, Chemical reactions in perovskite-type layer structures,Mol.Cryst.Liquid Cryst. 93, 119-145 (1983).Google Scholar
  125. 125.
    B. Tieke and G. Wegner, Synthesis of novel amphoteric polyelectrolytes by polymerization of 6-amino- 2,4-hexadienoic acid,Angew.Chem. 93(8), 693-694 (1981).Google Scholar
  126. 126.
    B. Tieke, Solid-state polymerization of butadienes. Polymerization of salts of 6-amino-2,4-trans,trans-hexadienoic acid,J. Polym.Sci.Polym.Chem.Ed. 22, 391-406 (1984).Google Scholar
  127. 127.
    B. Tieke, Solid-state polymerization of butadienes. Crystal structure and solution properties of astereoregular amphoteric 1,4-trans-polybutadiene,J. Polym.Sci.Polym.Chem.Ed. 22, 2895-2921 (1984).Google Scholar
  128. 128.
    P. Ferruti, S. Manzoni, S. C. W. Richardson, R. Duncan, N. G. Patrick, R. Mendichi, and M. Casolaro,Amphoteric linear poly(amido-amine)s as endosomolytic polymers: Correlation between physicochemical and biological properties,Macromolecules,33, 7793-7800 (2000).Google Scholar
  129. 129.
    M. Casoloro, F. Bignotti, L. Sartore, and M. Penco, The thermodynamics of basic and amphoteric poly(amidoamine)s containing peptide nitrogens as potential binding sites for metal ions,Polymer 42, 903-912(2001).Google Scholar
  130. 130.
    R. A. A. Muzzarelli, F. Tanfani, M. Emanuelli, and S. Mariotti, N-(carboxymethylidene)chitosans and N-(carboxymethyl)chitosans: novel chelating polyampholytes obtained from chitosan glyoxylate,Carbohydr.Res. 107, 199-214(1982).Google Scholar
  131. 131.
    A. M. Mathur, S. K. Moorjani, and A. B. Scranton, Methods for synthesis of hydrogel networks: areview,J.Macromol.Sci.Rev.Macromol.Chem.Phys. C36(2), 405-430 (1996).Google Scholar
  132. 132.
    S. Neyret and B. Vincent, The properties of polyampholyte microgel particles prepared by microemulsion polymerization,Polymer 38, 6129-6134 (1997).Google Scholar
  133. 133.
    T. W. Healy, A. Homola, and R. O. James, Coagulation of amphoteric latex colloids: Reversibility and specific ion effects,Faraday Discussions of the Chemical Society,65, 156-163 (1978).Google Scholar
  134. 134.
    K. W. Hampton and W. T. Ford, Styrylmethyl(trimethyl)ammonium methacrylate polyampholyte latexes,Macromolecules 33, 7292-7299 (2000).Google Scholar
  135. 135.
    H. Kawaguchi, H. Hoshimoto, H. Amagasa, and Y. Ohsuka, Modifications of a polymer latex,J. Colloid Interface Sci. 97, 465-475 (1984).Google Scholar
  136. 136.
    M. Kashiwabara, K. Fujimoto, and H. Kawaguchi, Preparation of monodisperse, reactive hydrogel microspheres and their amphoterization,Colloid.Polym.Sci. 273, 339-345 (1995).Google Scholar
  137. 137.
    B. Guo, A. Elgsaeter, B. E. Christensen, and B. T. Stokke, Sclerox-chitosan co-gels: Effects of charge density on swelling of gels in ionic aqueous solution and in poor solvents, and on the rehydration of dried gels,Polymer Gels and Networks,6, 471 -492 (1998).Google Scholar
  138. 138.
    W. F. Lee and G. H. Lin, Superabsorbent polymeric materials VIII: Swelling behavior of crosslinked poly[sodium acrylate-co-trimethylmethacryloyloxyethyl ammonium iodide] in aqueous salt solutions,J.Appl.Polym.Sci. 79(9), 1665-1674 (2001).Google Scholar
  139. 139.
    W. F. Lee and Y. J. Chen, Synthesis and swelling properties of 2-hydroxyethyl methacrylate-co-1-vinyl-3-(3-sulfopropyl)imidazolium betaine hydrogels,J. Appl.Polym.Sci. 81(12), 2888-2900 (2001).Google Scholar
  140. 140.
    C. Vilkund and K Irgum, Synthesis of porous zwitterionic sulfobetaine monoliths and characterization of their interaction with proteins,Macromolecules 33, 2539-2544 (2000).Google Scholar
  141. 141.
    E. Demosthenous, S. C. Hadjiyannakou, M. Vamvakaki, and C. S. Patrickios, Synthesis and characterization of polyampholytic model networks: Effects of polymer composition and architecture, Macromolecules 2001 (submitted for publication).Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Sarkyt E. Kudaibergenov
    • 1
  1. 1.Institute of Polymer Materials and TechnologyAlmatyRepublic of Kazakhstan

Personalised recommendations