Skip to main content

Uptake and Transport of Boron

  • Chapter
Boron in Plant and Animal Nutrition

Abstract

As a consequence of its structural role in growing tissues (Loomis and Durst, 1992; Matoh, 1997) and the inherent phloem immobility of B in most plant species (Brown and Shelp, 1997), boron has to be supplied continually throughout the life of the plant and fluctuations in soil B availability can have a profound effect on plant growth and productivity. Additionally, many species are also sensitive to high levels of B in the growing environments and growth inhibition as a result of excess B uptake is experienced in many agricultural regions. Understanding the biology of B uptake and transport in plants is therefore critical to the management of B in natural and agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asad, A., Bell, R. W., and Dell, B., 2000 Uptake and distribution of boron in canola at vegetative and early flowering stages using boron buffered solution culture. Commun. Soil Sci. Plant Anal 31: 2233–2249.

    Article  CAS  Google Scholar 

  • Barone, L. M., Shih, C., Wasserman, B. P., 1997, Mercury-induced conformational changes and identification of conserved surface loops in plasma membrane aquaporins from higher plants - topology of PMIP31 from Beta vulgaris L:. J. Biol Chem. 272: 30672–30677.

    Article  PubMed  CAS  Google Scholar 

  • Bellaloui, N., and Brown, P. H., 1998, Cultivar differences in boron uptake and distribution in celery (Apium graveolens), tomato (Lycopersicon esculentum) and wheat (Triticum aestivum). Plant Soil 198: 153–158.

    Article  CAS  Google Scholar 

  • Bellaloui, N., Brown, P. H., and Dandekar, A. M, 1999, Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco. Plant Physiol. 119: 735–741.

    Article  PubMed  CAS  Google Scholar 

  • Blevins, D. G, and Lukaszewski, K. M, 1998, Boron in plant structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 481–500.

    Article  PubMed  CAS  Google Scholar 

  • Brown, P. H, and Shelp, B. J., 1997, Boron mobility in plants. Plant Soil 193: 85–101.

    Article  CAS  Google Scholar 

  • Brown, P. H., and Hu, H., 1998, Phloem boron mobility in diverse plant species. Bot. Acta 111:331–335.

    CAS  Google Scholar 

  • Brown, P. H., Hu, H., and Roberts, W. G., 1999a, Occurrence of sugar alcohols determines boron toxicity symptoms of ornamental species. J. Amer. Soc. Hort. Sci. 124: 347–352.

    CAS  Google Scholar 

  • Brown, P. H., Bellaloui, N., Hu, H., and Dandekar, A., 1999b, Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physiol. 119: 17–20.

    Article  PubMed  CAS  Google Scholar 

  • Dannel, F., Pfeffer, H., and Römheld, V., 1997; Effect of pH and boron concentration in the nutrient solution on translocation of boron in the xylem of sunflower. In Boron in soils and plants (R. W. Bell and B. Rerkasem, eds.) Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 183–186.

    Chapter  Google Scholar 

  • Dannel, F., Pfeffer, H., and Romheld, V., 2000, Characterization of root boron pools, boron uptake and boron translocation in sunflower using stable isotopes 10B and 11B. Aust. J. Plant Physiol. 27, 397–405.

    CAS  Google Scholar 

  • Dell, B., and Huang, L., 1997, Physiological response of plants to low boron. Plant and Soil 193: 103–120.

    Article  CAS  Google Scholar 

  • Dordas, C, and Brown, P. H., 2000, Permeability of boric acid across lipid bilayers and factors affecting it. J. Membrane Biol. 175: 95–105.

    Article  CAS  Google Scholar 

  • Dordas, C., Chrispeels, M. J., and Brown, P. H., 2000, Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol. 124: 1349–1361.

    Article  PubMed  CAS  Google Scholar 

  • Dordas C, and Brown P. H., 2001a, Permeability and mechanism of transport of boric acid across the plasma membrane of Xenopus laevis oocytes. Biol. Trace Ele. Res. (in press).

    Google Scholar 

  • Dordas C, and Brown P. H., 2001b, Evidence of channel mediated transport of boric acid in squash (Cucurbita pepo). Plant Soil 235: 95–103.

    Article  CAS  Google Scholar 

  • Eckhert, C. D., 1998, Boron stimulates embryonic trout growth. J. Nutr. 128: 2488–2493.

    PubMed  CAS  Google Scholar 

  • Eckhert, C. D., and Rowe, R. I., 1999, Embryonic dysplasia and adult retinal dystrophy in boron-deficient zebrafish. J. Trace Elem. Exp. Med. 12: 213–219.

    Article  CAS  Google Scholar 

  • Fort, D. J., Propst, T. L., Stover, E. L., and Strong, P. L., 1998, Adverse reproductive and developmental effects in Xenopus from insufficient boron. Biol. Trace Elem. Res. 66: 237– 259.

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara, T., Takano, J., Yasumori, M., Kobayashi, M., Gajdos, Z., Noguchi, K., Aoki, N., Hayashi, H., Naito, S., and Chino, M., 2001, Isolation and characterization of Arabidopsis mutants related to boron nutrition. In Plant nutrition -food security and sustainability of agro-ecosystems (W. J. Horst et al. eds.), Kluwer Academic Publishers, The Netherlands, pp 16–17.

    Google Scholar 

  • Hu, H., and Brown, P. H., 1997, Absorption of boron by plant roots. Plant Soil 193: 49–58.

    Article  CAS  Google Scholar 

  • Hu, H., Penn, S. G., Lebrilla, C. B., and Brown, P. H., 1997, Isolation and characterization of soluble boron complexes in higher plants. Plant Physiol. 113: 649–655.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L., Pant, J., Dell, B., and Bell, R. W., 2000, Effects of boron deficiency on anther development and floret fertility in wheat (Triticum aestivum L. ’Wilgoyne’). Ann. Bot. 85: 493–500.

    Article  CAS  Google Scholar 

  • Huang, L., Bell, R. W., and Dell, B., 2001, Boron supply into wheat (Triticum aestivum L. cv. Wilgoyne) ears whilst still enclosed within leaf sheaths. J. Exp. Bot. 52: 1731–1738.

    Article  PubMed  CAS  Google Scholar 

  • Lande, M. B., Donovan, J. M. and Zeidel, M. L.’, 1995, The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J. Gen. Phys. 106: 67– 84.

    Article  CAS  Google Scholar 

  • Lanoue, L., Trollinger, D. R., Strong, P. L., and Keen, C. L., 2000, Functional impairments in preimplantation mouse embryos following boron deficiency. FASEB J. 14 A: 539.

    Google Scholar 

  • Loomis W. D., and Durst, R. W., 1992, Chemistry and biology of boron. Biofactors 3: 229– 239.

    PubMed  CAS  Google Scholar 

  • Matoh, T., 1997, Boron in plant cell walls. Plant and Soil 193: 59–70.

    Article  CAS  Google Scholar 

  • Nable, R. O., Banuelos, G. S., and Paull, J. G., 1997, Boron toxicity. Plant Soil 193: 181–198.

    Article  CAS  Google Scholar 

  • Noguchi, K., Yasumori, M., Imai, t., Naito, S., Matsunaga, T., Oda, H., Hayashi, H., Chino, M., and Fujiwara, T., 1997, borl-f an Arabidopsis thaliana mutant that requires a high level of boron. Plant Physiol. 115: 901–906.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, K., Dannel, F., Pfeffer, H., Romheld, V., Hayashi, H., and Fujiwara, T., 2000, Defect in root-shoot translocation of boron in Arabidopsis thaliana mutant bor1–1. J. Plant Physiol. 156:751–755.

    Article  CAS  Google Scholar 

  • Nuttall, C. Y, 2000, PhD Thesis Boron Tolerance and Uptake in Higher Plants. University of Cambridge.

    Google Scholar 

  • Nyomora, A. M. S., Brown, P. H., and Freeman, M., 1997, Fall foliar-applied boron increases tissue boron concentration and nut set of almond. J. Amer. Soc. Hort. Sci. 122: 405–410.

    CAS  Google Scholar 

  • Nyomora, A. M. S., Brown, P. H., and Krueger, B., 1999, Rate and time of boron application increase almond productivity and tissue boron concentration. HortScience 34: 242–245.

    CAS  Google Scholar 

  • Nyomora, A. M. S., Brown, P. H., Pinney, K., and Polito, V. S., 2000, Foliar application of boron to almond trees affects pollen quality. J. Amer. Soc. Hort. Sci. 125: 265–270.

    CAS  Google Scholar 

  • Pant, J., Rerkasem, B., and Noppakoonwong, R., 1998. Effect of water stress on the boron response of wheat genotypes under low boron field conditions. Plant soil 202: 193–200.

    Article  CAS  Google Scholar 

  • Perica, S., Brown, P. H., Connell, J. H., Nyomora, A. M. S., Dordas, C., and Hu, H., 2001, foliar boron application improves flowe4r fertility and fruit set of olive. HortScience 36: 714–716.

    CAS  Google Scholar 

  • Pfeffer, H., Dannel, F., and Romheld, V., 1997, Compartmentation of boron in roots and its translocation to the shoot of sunflower as affected by short term changes in boron supply. In Boron in soils and plants (R. W. Bell and B. Rerkasem, eds.) Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 203–207.

    Chapter  Google Scholar 

  • Pfeffer, H., Dannel, F., and Roemheld, V., 1999, Are there two mechanisms for boron uptake in sunflower? J. Plant Physiol. 155: 34–40.

    Article  CAS  Google Scholar 

  • Raven, J. A, 1980, Short- and long-distance transport of boric acid in plants. New Phytol. 84: 231–249.

    Article  CAS  Google Scholar 

  • Rerkasem, B., and Jamjod, S., 1997, Genotypic variation in plant response to low boron and implications for plant breeding. Plant Soil. 193: 160–180.

    Article  Google Scholar 

  • Rerkasem, B., Lordkaew, S., and Dell, B., 1997, Boron requirement for reproductive development in wheat. Soil Sci. Plant Nutr. 43: 953–957.

    CAS  Google Scholar 

  • Rowe, R. I., Bouzan, C., Nabili, S., and Eckhert, C. D., 1998, The response of trout and zebrafish embryos to low and high boron concentrations in U-shaped. Biol. Trace Elem. Res 66: 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, R. I. and Eckhert, C. D, 1999, Boron is required for zebrafish embryogenesis. J. Exp. Biol. 202: 1649–1654.

    PubMed  CAS  Google Scholar 

  • Schuler, I., Milon, A., Nakatani, Y., Ourisson, G., Albrecht, A. M., Benveniste, P., and Hartmann, M. A., 1991, Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. Proc. Natl. Acad. Sci. USA 88: 6926–6930.

    Article  PubMed  CAS  Google Scholar 

  • Shelp, B. J., Kitheka, A. M., Vanderpool, R. A., Cauwenberghe, O. R. V., and Spiers, G. A., 1998, Xylem-to-phloem transfer of boron in broccoli and lupin during early reproductive growth. Physiol. Plant. 104: 533–540.

    Article  CAS  Google Scholar 

  • Stangoulis, J. C. R., Reid, R. J., Brown, P. H., and Graham, R. D., 2001, Kinetic analysis of boron transport in Chara. Planta 213: 142–146.

    Article  PubMed  CAS  Google Scholar 

  • Subedi, K. D., Gregory, P. J., Summerfield, R. J., and Gooding, M. J., 1998, Cold temperatures and boron deficiency caused grain set failure in spring wheat (Triticum aestivum L.). Field Crops Res. 57: 277–288.

    Article  Google Scholar 

  • Weig, A., Deswarte, C., Chrispeels, M. J., 1997, The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol. 114: 1347–1357.

    Article  PubMed  CAS  Google Scholar 

  • Yousef, L. W., and Macey, R. I., 1989, A method to distinguish between pore and carrier kinetics applied to urea transport across the erythrocyte membrane. Biochim. Biophys. Acta 984: 281–288.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, P.H., Bellaloui, N., Sah, R.N., Bassil, E., Hu, H. (2002). Uptake and Transport of Boron. In: Goldbach, H.E., Brown, P.H., Rerkasem, B., Thellier, M., Wimmer, M.A., Bell, R.W. (eds) Boron in Plant and Animal Nutrition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0607-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0607-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5155-9

  • Online ISBN: 978-1-4615-0607-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics