Skip to main content

Boron Requirements of Plants

  • Chapter
Boron in Plant and Animal Nutrition

Abstract

The present paper, which is intended to update the review by Bell (1997), identifies significant advances in knowledge and understanding about boron (B) requirements of plants, and their implications for crop management and further research. Since 1997 a number of advances have been made in quantifying the B requirements of plants. Significant among these was the development of a B-buffered solution culture system that maintains solution B concentrations at levels typical of soil solutions (Asad et al., 1997a,Asad et al., 1997b). Further reports have come forth on critical B concentrations in soils and plants for diagnosis and prognosis of B deficiency. Further evidence has also emerged that the requirement for growing organs greatly exceeds that of mature organs which are in a maintenance growth phase. Some progress has been made in defining the effects of environmental factors on B requirements. Genotypic variation in B requirements continues to be explored, and exciting new work has shown that genetic engineering of tobacco plants to produce sorbitol not only increases B mobility in the phloem but also decreases the external B requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aitken, R.L., Jeffrey, A.J., and Compton, B.L., 1987, Evaluation of selected extractants for boron in some Queensland soils. Aust. J. Soil Res. 25: 263–273.

    Article  CAS  Google Scholar 

  • Asad, A., Bell, R.W. and Dell, B., 2000, Uptake and distribution of boron in vegetative and flowering canola in B-buffered solution culture. Commun.Soil Sci.Plant Anal. 31: 2233– 2250.

    Article  CAS  Google Scholar 

  • Asad, A., Bell, R.W. and Dell, B., 2001, A critical comparison of the external and internal boron requirements for contrasting species in boron-buffered solution culture. Plant Soil 233:31–45.

    Article  CAS  Google Scholar 

  • Asad, A., Bell, R.W., Dell, B., and Huang, L., 1997a, Development of a boron buffered solution culture system for controlled studies of plant boron nutrition. Plant Soil 188: 21–32.

    Article  CAS  Google Scholar 

  • Asad, A., Bell, R.W., Dell, B. and Huang, L., 1997b, External boron requirements of canola in boron buffered solution culture system. Annals of Botany 80: 65–73.

    Article  CAS  Google Scholar 

  • Asher, C.J. and Edwards, D.G., 1983, Modern solution culture techniques. In Encyclopaedia of Plant Physiology, New Series, Vol.15, Inorganic Plant Nutrition. A. Läuchli and R. L. Bieleski (eds.), Springer-Verlag, Berlin, Germany, pp.94–119.

    Chapter  Google Scholar 

  • Barghchi, M. and Alderson, P.G., 1996, The control of shoot tip necrosis in Pistacia vera L. in vitro. Plant Growth Regulation 20: 31–35.

    Article  CAS  Google Scholar 

  • Bell, R.W., 1997, Diagnosis and prediction of boron deficiency for plant production. Plant Soil 193: 149–168.

    Article  CAS  Google Scholar 

  • Bell, R.W., 2000, Temporary nutrient deficiency - a difficult case for diagnosis and prognosis by plant analysis. Commun. Soil Science Plant Anal. 31: 1847–1861.

    Article  CAS  Google Scholar 

  • Bellaloui, N. and Brown, P.H., 1998, Cultivar differences in boron uptake and distribution in celery (Apium graveolens), tomato (Lycopersicon esculentum) and wheat (Triticum aestivum). Plant Soil 198: 153–158.

    Article  CAS  Google Scholar 

  • Bellaloui, N., Brown, P.H., and Dandekar, A.M., 2000, Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco. Plant Physiol. 119: 735– 741.

    Article  Google Scholar 

  • Bennett, A., Rowe, R. I., Soch, N., and Eckhert, C.D., 1999, Boron stimulates yeast (Saccharomyces cerevisiae) growth. J. Nutrition 129: 2236– 2238.

    CAS  Google Scholar 

  • Blevins, D.G. and Lucaszewski, K.M., 1998, Boron in plant structure and function. Ann. Rev. Plant Physiol. 49: 481–500.

    CAS  Google Scholar 

  • Brown, P.H., 2001, Recent advances in boron research, In Boron in Plant and Animal Nutrition. (H.E. Goldbach, ed.), Kluwer Academic Publ, Dordrecht, Netherlands.

    Google Scholar 

  • Brown, P.H. and Hu, H., 1997, Does boron play only a structural role in the growing tissues of higher plants? In Plant Nutrition for Sustainable Food Production and Environment,. (T. Ando, K. Fujita, T. Mae, H. Matsumoto, S. Mori and J. Sekiya, eds). Developments in Plant and Soil Sciences, Vol 78. Kluwer Academic Publ., Dordrecht, Netherlands, pp. 211–215.

    Google Scholar 

  • Brown, P.H. and Shelp, B.J., 1997, Boron mobility in plants. Plant Soil 193: 85–102.

    Article  CAS  Google Scholar 

  • Cakmak, I. and Römheld, V., 1997, Boron-deficiency-induced impairments of cellular functions in plants. Plant Soil 193: 71–84.

    Article  CAS  Google Scholar 

  • Cakmak, I., Kurz, H., and Marschner, H., 1995, Short term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiol. Plant. 95: 11–18.

    Article  CAS  Google Scholar 

  • Chapman, V.J., Edwards, D.G., Blamey, F.P.C., and Asher, C.J., 1997, Challenging the dogma of a narrow supply range between deficiency and toxicity of boron. In Boron in Soils and Plants. (R. W. Bell and B. Rerkasem, eds.). Kluwer Academic Publ, Dordrecht, Netherlands, pp. 151–155.

    Chapter  Google Scholar 

  • Cheng, C. and McComb,J. A., 1992, In vitro germination of wheat pollen in raffinose medium. New Phytol. 120: 459–462.

    Article  CAS  Google Scholar 

  • Camacho-Cristobal, J.J. and Gonzalez-Fontes, A., 1999, Boron deficiency causes a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants. Planta 209: 528–536.

    Article  CAS  PubMed  Google Scholar 

  • Dannel, F., Pfeffer, H. and Römheld, V., 2000, Characterisation of root boron pools, boron uptake and boron translocation in sunflower using stable isotopes ,10B and 11B. Aust. J. Plant Physiol. 27: 397–405.

    CAS  Google Scholar 

  • Datta, S.P., Bhadoria, P.B.S., and Kar, S., 1998, Availability of extractable boron in some acid soils, West Bengal, India. Commun. Soil Sci. Plant Anal. 29: 2285–2306.

    Article  CAS  Google Scholar 

  • Dell, B. and Huang, L., 1997, Physiological response of plants to low boron. Plant Soil 193: 103–120.

    Article  CAS  Google Scholar 

  • Dell, B., Malajczuk, N., Xu, D. and Grove, T., 2001, Nutrient Disorders in Plantation Eucalypts. 2nd edition. Monograph No. 74, ACIAR, Canberra.

    Google Scholar 

  • El-Shintinawy, F., 1997, Structural and functional damage caused by boron deficiency in sunflower leaves. Photosynthetica 36: 565–573.

    Article  Google Scholar 

  • Ferran, X., Tous, J., Romero, A., Lloveras, J., and Pericon, J. R., 1997, Boron does not increase hazelnut fruit set and production, HortScience 32: 1053–55.

    CAS  Google Scholar 

  • Findeklee, P. and Goldbach, H.E., 1996, Rapid effects of boron deficiency on cell wall elasticity modulus in Cucurbita pepo roots. Botanica Acta 109: 1–3.

    Google Scholar 

  • Fleischer, A., Titel, C., and Ehwald, R., 1998, The boron requirements and cell wall properties of growing and stationery suspension-cultured Chenopodium album L. cells. Plant Physiology 117: 1401–1410.

    Article  CAS  Google Scholar 

  • Fleischer, A., O’Neill, M.A., and Ehwald, R., 1999, The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiology 121: 829–838.

    Article  CAS  PubMed  Google Scholar 

  • Forno, D.A., Asher, C.J. and Edwards, D.G., 1979, Boron nutrition of cassava, and the boron x temperature interaction. Field Crops Research 2: 265–279.

    Article  Google Scholar 

  • Goldbach, H.E., 1997, A critical review on current hypotheses concerning the role of boron in higher plants: suggestions for further research and methodological requirements. J. Trace and Microprobe Techniques 15: 51–97.

    CAS  Google Scholar 

  • Goldbach, H.E., Wimmer, M.A., and Findeklee, P., 2000, Discussion paper: Boron- How can the critical level be defined? J. Plant Nutrition and Soil Science 163: 115–121.

    Article  CAS  Google Scholar 

  • Howard, D.D., Gwathmey, C. O., and Sams, C.E., 1998, Foliar feeding of cotton: Evaluation of potassium sources, potassium solution buffering, and boron, Agron. J. 90: 740–746.

    Article  CAS  Google Scholar 

  • Huang, L.B., Bell, R.W. and Dell, B., 1999, Factors controlling equilibrium boron (B) concentration in nutrient solution buffered with B-specific resin (Amberlite IRA 743). Plant Soil 208: 233–241.

    Article  CAS  Google Scholar 

  • Huang, L., Bell, R.W., and Dell, B., 2000, Estimating boron requirements for sunflower growth with a B-buffered solution culture system. Commun. Soil Sci. Plant Anal. 31: 2111–2123.

    Article  CAS  Google Scholar 

  • Huang, L., Pant, J., Dell, B. and Bell, R.W., 2000, Effects of boron deficiency on anther development and floret fertility in wheat (Triticum aestivum L. cv. Wilgoyne). Annals Botany 85: 493–500.

    Article  CAS  Google Scholar 

  • Huang, L., Bell, R.W., and Dell, B., 2001a, Boron supply to wheat (Triticum aestivum L. cv. Wilgoyne) ear during early growth phase. J. Exp. Bot. 52: 1731–1738.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L., Ye, Z. and Bell, R.W., 1996, The importance of sampling immature leaves for the diagnosis of boron deficiency in oilseed rape (Brassica napus cv. Eureka). Plant Soil 183: 187–198.

    Article  CAS  Google Scholar 

  • Huang, L., Gherardi, M., Bell, R.W. and Dell, B., 2001b, High light intensity increases external B requirements for leaf growth of sunflower (Helianthus annuus L. cv. Hysun 25) in boron-buffered (B) solution culture. In Boron in Plant and Animal Nutrition. (H. E. Goldbach, ed.), Kluwer Academic Publ, Dordrecht, Netherlands.

    Google Scholar 

  • Hue, N.V., Hiranburana, N. and Fox, R.L., 1988, Boron status of Hawaiian soils as measured by B sorption and plant uptake. Commun. Soil Science Plant Nutrition 19: 517–528.

    Article  CAS  Google Scholar 

  • Jahiruddin, M. and Cresser, M.S., 1997, Sequential cold and hot water extract of boron from soils and re-extraction after adsorption by bentonite, kaolinite, iron, and aluminium hydrous oxides over a range of pH. Commun. Soil Sci. Plant Anal. 28: 1643–1652.

    Article  CAS  Google Scholar 

  • Jamjod, S. and Rerkasem, B., 1999, Genotypic variation in response of barley to boron deficiency. Plant Soil 215: 65–72.

    Article  CAS  Google Scholar 

  • Kotur, S., 1998, Standardisation of foliar spray of boron for correction of brown rot and for increasing yield of cauliflower (Brassica olearea convar botrytis var botrytis) in Bihar plateau. Indian J. Agric. Sciences 68: 218–221.

    Google Scholar 

  • Kunin, R. and Preuss, A., 1964, Characterisation of boron-specific ion exchange resins. J. Phys. Chem. 51: 1111–1115.

    Article  Google Scholar 

  • Lima Filho, O. F. de and Malavolta, E., 1998, Evaluation of extraction procedures on determination of critical soil and foliar levels of boron and zinc in coffee plants. Commun. Soil Sci. Plant Nutr. 29: 825–833.

    Article  Google Scholar 

  • Matsi, T., Antoniadis, V. and Barbayiannis, N., 2000, Evaluation of the NH4HC03-DTPA soil test for assessing boron availability to wheat. Commun. Soil Sci. Plant Anal. 31: 669–678.

    Article  CAS  Google Scholar 

  • Miguez, S.R. de, Diggs, C., Ras, C. and de-Miguez, S.R., 1999, Effect of some soil properties on extractable boron content in Argentine Pampas soils. Commun. Soil Sci. Plant Anal. 30:2083–2100.

    Article  Google Scholar 

  • Miyasaka, S.C., Million, J.B., Hue, N.V. and McCullock, C.E., 1999, Boron requirement of young ’Sharwil’ avocado trees. HortScience 34: 886–890.

    CAS  Google Scholar 

  • Netsangtip, R, Bell, R.W., Dell, B. and Loneragan, J.F., 1993, An effect of light on the B requirement for leaf blade elongation in black gram (Vigna mungo). Plant Soil 155/156: 413–416.

    Google Scholar 

  • Nyomora, A.M.S., Brown, P.H., and Freeman, M., 1997, Fall foliar-applied boron increases tissue boron concentration and nut set of almond. J. Amer. Soc. Hort. Sci. 122: 405–410.

    CAS  Google Scholar 

  • Nyomora, A.M.S., Brown, P.H., and Krueger, B., 1999, Rate and time of boron application increase almond productivity and tissue boron concentration, HortScience 34: 242–245.

    CAS  Google Scholar 

  • Nyomora, A. M. S., Brown, P. H., Pinney, K. and Polito, V. S., 2000, Foliar application of boron to almond trees affects pollen quality, J. Amer. Soc. Hort. Science, 125: 265–70.

    CAS  Google Scholar 

  • Oertli, J.J., 1994, Non-homogeneity of boron distribution in plants and consequences for foliar diagnosis. Commun. Soil Sci. Plant Anal. 25: 1133–1147.

    Article  CAS  Google Scholar 

  • Pant, J., Rerkasem, B. and Noppakoonwong, R. 1998, Effect of water stress on the boron response of wheat genotypes under low boron field conditions. Plant Soil 202: 193–200.

    Article  CAS  Google Scholar 

  • Parker, D.R. and Norvell, W.A., 1999, Advances in solution ciuulture methods for plant mineral nutrition research. Advances Agronomy 65: 151–213.

    Article  CAS  Google Scholar 

  • Perica, S., Brown, P.H., Connell, J.H., Nyomora, A.M.S., Dordas, C., Hu, H., and Stangoulis, J., 2001, Foliar boron application improves flower fertility and fruit set of olive, HortScience 36: 714–716.

    CAS  Google Scholar 

  • Rashid, A., Rafique, E. and Ali, N., 1997a, Micronutrient deficiencies in rainfed calcareous soils of Pakistan. II. Boron nutrition of the peanut plant. Commum. Soil Sci. Plant Anal. 28: 149–159.

    Article  CAS  Google Scholar 

  • Rashid, A., Rafique, E. and Bughio, N., 1997b, Micronutrient deficiencies in rainfed calcareous soils of Pakistan. II. Boron nutrition of sorghum. Commum. Soil Sci. Plant Anal. 28:441–454.

    Article  CAS  Google Scholar 

  • Rerkasem, B., 2001, Boron nutrition of crops and genotypic variation in efficiency. In Boron in Plant and Animal Nutrition. (H. E. Goldbach, ed.), Kluwer Academic Publ, Dordrecht, Netherlands.

    Google Scholar 

  • Rogalla, H. and Römheld, V., 2001, Effects of silicon on the availability of boron. In Boron in Plant and Animal Nutrition. (H. E. Goldbach, ed.), Kluwer Academic Publ, Dordrecht, Netherlands.

    Google Scholar 

  • Rosoleum, C.A. and Costa, A., 2000, Cotton growth and boron distribution in the plant as affected by a temporary deficiency of boron. J Plant Nutrition 23: 815–25.

    Article  Google Scholar 

  • Sakya, A., 2000, M. Phil Thesis, Boron Nutrition of Eucalypt Seedlings and the Role of Ectomycorrhizal Fungi. Murdoch University, Murdoch, W. Australia.

    Google Scholar 

  • Shelp, B.J., Kitheka, A.M., Vanderpool, R.A., Van Cauwenberghe, O.R., and Spiers, G.A., 1998, Xylem-to-phloem transfer of boron in broccoli and lupin during early reproductive growth. Physiol. Plant. 104: 533–540.

    Article  CAS  Google Scholar 

  • Shorrocks, V.M., 1997, The occurrence and correction of boron deficiency, Plant Soil 193: 121–148.

    Article  CAS  Google Scholar 

  • Srivastava, S.P., Bhandari, T.M.S., Yadav, C.R., Joshi, M., and Erskine, W., 2000, Boron deficiency in lentil: yield loss and geographic distribution in a germplasm collection. Plant Soil 219: 147–151.

    Article  CAS  Google Scholar 

  • Stangoulis, J.C.R., Webb, M.J., and Graham, R.D., 2000, Boron efficiency in oilseed rape: II. Development of a rapid lab-based screening technique. Plant Soil 225: 253–261.

    Article  CAS  Google Scholar 

  • Subedi, K.D., Budhathoki, C.B., and Subedi, M., 1997, Variation in sterility among wheat (Triticum aestivum L.) genotypes in response to boron deficiency in Nepal. Euphytica 95:21–26

    Article  Google Scholar 

  • Tadano, J., et al. 2001, Soil Sci. Plant Nutr. 47: 345–357.

    Article  Google Scholar 

  • Tsalidas, C. D. and Chartzoulakis, K. S., 1999, Boron deficiency in olive trees in Greece in relation to soil boron concentration. Acta Hort. 474: 341–344.

    Google Scholar 

  • Wang, K., Yang, Y., Xue, J.M., Ye, Z.Q., Wei, Y. and Bell, R.W., 1999, Low risks of toxicity from boron fertiliser in oilseed rape-rice rotations in south east China. Nutrient Cycling in Agroecosystems 54: 189–197.

    Article  CAS  Google Scholar 

  • Wei, Y.Z., Bell, R.W., and Yang, Y., 2001, Prognosis of boron deficiency in oilseed rape (Brassica napus) by soil analysis. In Boron in Plant and Animal Nutrition. (H. E. Goldbach, ed.), Kluwer Academic Publ, Dordrecht, Netherlands.

    Google Scholar 

  • Wei, Y.Z., Bell, R.W., Yang, Y., Xue, J.M., Wang, K. and Huang, L, 1998, Prognosis of boron deficiency in oilseed rape (Brassica napus L.) by plant analysis. Aust. J. Agric Res. 49: 867–874

    Article  CAS  Google Scholar 

  • Wojcik, P. P. and Cieslinski, G., 2000, Effect of boron fertilization on yield and fruit quality of’’Elstar’ and ’Sampion’ apple cultivars. Acta Hort. 512: 189–195.

    CAS  Google Scholar 

  • Xu, J.M., Wang, K., Huang, L., and Bell, R.W., 2001, Soil boron fractions and their relation to boron availability to oilseed rape. Soil Science Soc.Amer. J. 65: 133–138.

    Article  CAS  Google Scholar 

  • Yang, X., Yu, Y.G., Yang, Y, Bell, R.W. and Ye Z.Q, 2000, Residual effectiveness of boron fertilizer for oilseed rape in intensively cropped rice-based rotations. Nutrient Cycling in Agroecosystems 57: 171–181.

    Article  CAS  Google Scholar 

  • Ye, Z. Q., Bell, R.W., Dell, B. and Huang, L., 2000, Response of sunflower (Helianthus annuus L.) to boron supply at low root zone temperature Commun.Soil Sci. Plant Anal. 31:2379–2392.

    Article  CAS  Google Scholar 

  • Ye, Z. Q., Bell, R.W., Dell, B. and Huang, L., 2001, Low root zone temperature did not exacerbate boron deficiency in oilseed rape (Brassica napus L. cv Hyola 42) plants. In Boron in Plant and Animal Nutrition. (H. E. Goldbach, ed.), Kluwer Academic Publ, Dordrecht, Netherlands.

    Google Scholar 

  • Yermiyahu, U., Keren, R., and Chen, Y., 2001, Boron uptake by plants as affected by organic matter. In Boron in Plant and Animal Nutrition. (H.E. Goldbach, ed.), Kluwer Academic Publ, Dordrecht, Netherlands.

    Google Scholar 

  • Yu, X. and Bell, P.H., 1998, Nutrient deficiency symptoms and boron uptake mechanisms of rice. J. Plant Nutrition 21: 2077–2088.

    Article  CAS  Google Scholar 

  • Zaman, N.W, Farid, A.T.M, Rahman, A.F.M., Taluker, M.Z.I., and Sarker, R.H., 1998, Yield and fertility of Brassica napus as affected by boron deficiency in soil. Thai J. Agric. Science 31: 92–97.

    CAS  Google Scholar 

  • Zerrari, N., Moustaoui, D., and Verloo, M., 1999, The various forms of soil boron: importance, effect of soil characteristics and plant availability. Agrochimica 43: 77–88.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bell, R.W., Dell, B., Huang, L. (2002). Boron Requirements of Plants. In: Goldbach, H.E., Brown, P.H., Rerkasem, B., Thellier, M., Wimmer, M.A., Bell, R.W. (eds) Boron in Plant and Animal Nutrition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0607-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0607-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5155-9

  • Online ISBN: 978-1-4615-0607-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics