Skip to main content

Rapid Responses of Plants to Boron Deprivation

Where are the links between boron’s primary role and secondary reactions?

  • Chapter
Boron in Plant and Animal Nutrition

Abstract

B deficiency has been described to affect a wide range of processes in plants, ranging from metabolism of nucleic acids, protein synthesis, metabolism and transport of carbohydrates, chemistry and physics of cell walls, synthesis and transport of plant hormones (especially IAA), regulation of plasma membrane-bound ATPase and oxido-reductase activities, as well as synthesis and metabolism of phenolics and incidence of oxidative damage of membranes, (for reviews see e.g. Goldbach, 1997; Blevins and Lucaszewski, 1998; Bell et al., 2001, this volume). Considering that many observations started at least several hours or even days and weeks after B deprivation, and taking into account that recent reports point to very rapid reactions within minutes (Findeklee and Goldbach, 1996; Findeklee et al., 1997; Mühling et al., 1998; Wimmer and Goldbach, 1999), it is intriguing to explore the sequence of responses to B deprivation. Below, we summarise effects which have been observed within the first minutes to few hours of B deficiency and discuss how these early responses may be linked to the expression of secondary reactions or symptoms in the light of recent observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Badrawy, R., Bussler, W., 1977, Symptome von Bormangel und Borüberschuß bei Hibiscus esculentus. Z. Pflanzenernähr. Bodenkd., 140: 505–513.

    Article  CAS  Google Scholar 

  • Baluška, F., Salaj, J., Mathur, J., Braun, M., Jasper, F., Šamaj, J., Chua, N. -H., Barlow, P. W., and Volkmann, D., 2000b, Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-enriched F-actin meshworks accumulated within outgrowing bulges. Dev. Biol, 227: 618–632.

    Article  PubMed  Google Scholar 

  • Baluška, F., Volkmann, D., and Barlow, P.W., 2000a, Actin-based domains of the ’cell periphery complex’ and their associations with polarized ’cell bodies’ in higher plants. Plant Biol. 2:253–267.

    Article  Google Scholar 

  • Barlow, P.W., and Baluška, F., 2000, Cytoskeletal perspectives on root growth and morphogenesis. Ann. Rev. Plant Physiol Plant Mol Biol, 51: 289–322.

    Article  CAS  Google Scholar 

  • Barr, R., Boettger, M., and Crane, F.L., 1993, The effect of boron on plasma membrane electron transport and associated proton secretion by cultured carrot cells. Biochem. Mol Biol Int., 31: 31–39.

    PubMed  CAS  Google Scholar 

  • Bell, R. Dell, B., and Huang, L. 2001, Boron requirements of plants. In Boron in Plant and Animal Nutrition. H. E. Goldbach, ed., Kluwer Plenum Academic Publ, this volume.

    Google Scholar 

  • Blaser-Grill, J., Knoppik, D., Amberger, A., and Goldbach, H., 1989, Influence of boron on the membrane potential in Elodea densa and Helianthus annuus roots and H+ extrusion of suspension cultured Daucus carota cells. Plant Physiol., 90: 280–284.

    Article  PubMed  CAS  Google Scholar 

  • Blevins, D.G., Lukaszewski, K.M., 1998, Boron in plant structure and function. Annu. Rev Plant Physiol Mol Biol., 49: 481–500.

    Article  CAS  Google Scholar 

  • Brown, P.H., Bellaloui, N., Sah, R.N., Bassil, E., and Hu, H., 2001, Uptake and translocation of boron. In Boron in Plant and Animal Nutrition. H. E. Goldbach et al., ed., Kluwer Plenum Academic Publ, this volume.

    Google Scholar 

  • Bussler W., 1964, Die Bormangelsymptome und ihre Entwicklung. Z. Pflanzenern. Dung. Bodenkde., 91: 1–14.

    Article  Google Scholar 

  • Cakmak, I., and Römheld, V., 1997, Boron deficiency-induced impairments of cellular functions in plants. In: Boron in Soils and Plants: Reviews’, B. Dell, P. Brown and R. Bell; Dordrecht, Netherlands, Kluwer Academic Publishers, pp. 71–84.

    Chapter  Google Scholar 

  • Cakmak, I., Kurz, H., and Marschner, H., 1995, Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiol. Plant., 95: 11–18.

    Article  CAS  Google Scholar 

  • Clarkson, D.T., Hanson, J.B., 1980, The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol, 31: 239–298.

    Article  CAS  Google Scholar 

  • Cyr, R., 1991, Calcium/calmodulin affects microtubule stability in lysed protoplasts. J. Cell Sci., 100:311–317.

    CAS  Google Scholar 

  • Ehwald, R., Fleischer, A., Schneider, H., and O’Neill, M., 2001, Stability of the Borate-ester Cross-link in Rhamnogalacturonan II at Low pH and Calcium Activity in muro and in vivo. In Boron in Plant and Animal Nutrition. H. E. Goldbach et al., ed., Kluwer Plenum Academic Publ, this volume.

    Google Scholar 

  • Findeklee, P., and Goldbach, H.E., 1996, Rapid effects of boron deficiency on cell wall elasticity modulus in Cucurbita pepo roots. Bot. Acta, 109: 463–465.

    CAS  Google Scholar 

  • Findeklee, P., Wimmer, M., and Goldbach, H.E., 1997, Early effects of boron deficiency on physical cell wall parameters, hydraulic conductivity and plasmalemma-bound reductase activities in young C. pepo and V. faba roots. In R. Bell and B. Rerkasem: Boron in Soil and Plants, Proceedings; Kluwer Academic Publishers Dordrecht, The Netherlands, pp. 221–227.

    Chapter  Google Scholar 

  • Fleischer, A., 2000, Borwirkungen an primaren Zellwanden pflanzlicher Zellen (Effects of boron on primary plant cell walls), Ph.D. thesis Humboldt-University Berlin, Germany.

    Google Scholar 

  • Fleischer, A., O’Neill, M.A., and Ehwald, R., 1999, The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol, 121: 829–838.

    Article  PubMed  CAS  Google Scholar 

  • Fleischer, A., Titel, C., and Ehwald, R., 1998, The boron requirement and cell wall properties of growing and stationary suspension-cultured Chenopodium album L. cells. Plant Physiol., 117: 1401–1410.

    Article  PubMed  CAS  Google Scholar 

  • Goldbach, H.E., Blaser-Grill, J., Lindemann, N., Porzelt, M., Hörrmann, C., Lupp, B., and Gessner, B., 1991, Influence of boron on net proton release and its relation to other metabolic processes. In: D. D. Randall, D. G. .Blevins: Current Topics in Plant Biochemistry and Physiology 10, University of Missouri, USA, 195–220.

    Google Scholar 

  • Goldbach, H.E., 1997, A critical review on current hypotheses concerning the role of boron in higher plants: suggestions for further research and methodological requirements. J. Trace Micr. Techn., 15:51–91.

    CAS  Google Scholar 

  • Goldbach, H.E., Wimmer, M., and Findeklee, P., 2000, Discussion Paper: Boron - how can the critical level be defined? J. Plant Nutr. Soil Sci., 163: 115–121.

    Article  CAS  Google Scholar 

  • Goldbach, H.E., Yu, Q., Wingender, R., Schulz, M., Wimmer, M., Finderklee, P., and Baluška F, 2001, Rapid response reactions of roots to boron deprivation. J. Plant Nutr. Soil Sci., 161: 173–181.

    Article  Google Scholar 

  • Grabski, S., Arnoys, E., Busch, B., and Schindler, M., 1998, Regulation of actin tension in plant cells by kinases and phosphatases. Plant Physiol., 116: 279–290.

    Article  CAS  Google Scholar 

  • Hu H, Brown PH, 1994, Localization of boron in the cell wall and its association with pectin. Evidence of a structural role of boron in the cell wall. Plant Physiol., 105: 681–689.

    PubMed  CAS  Google Scholar 

  • Hunt, CD., 2001, Boron-binding biomolecules: a key to understanding the beneficial physiologic effects of dietary boron from prokaryotes to humans. In Boron in Plant and Animal Nutrition. H. E. Goldbach et al., ed., Kluwer Plenum Academic Publ, this volume.

    Google Scholar 

  • Jones, D.L., Kochian, L.V., and Gilroy, S., 1998, Aluminum induces a decrease in cytosolic calcium concentration in BY-2 tobacco cell cultures. Plant Physiol., 116: 81–89.

    Article  CAS  Google Scholar 

  • Kerr, P.G., and Carter, J.V., 1990, Tubulin isotypes in rye roots are altered during cold acclimation. Plant Physiol., 93: 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, M., Matoh, T., and Azuma, J.I., 1996, Two chains of rhamnogalacturonan II are cross-linked by borate diol ester bonds in higher plant cell walls. Plant Physiol., 110: 1017–1020.

    PubMed  CAS  Google Scholar 

  • Kobayashi, M., Nakagawa, H., Asaka, T. and Matoh, T., 1999, Borate-rhamnogalacturonan II bonding reinforced by Ca2+ retains pectic polysaccharides in higher-plant cell walls. Plant Physiol., 119: 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, M., Ohno, K., and Matoh, T., 1997, Boron nutrition of cultured tobacco BY-2 cells. II Characterization of the boron-polysaccharide complex. Plant Cell Physiol., 38: 676–683.

    Article  CAS  Google Scholar 

  • Lukaszewski, K.M., and Blevins, D.G., 1996, Root growth inhibition in boron-deficient or aluminum-stressed squash may be a result of impaired ascorbate metabolism. Plant Physiol., 112: 1135–1140.

    PubMed  CAS  Google Scholar 

  • Ma, L.G., Fan, Q.S., Yu, Z.Q., Zhou, H.L., Zhang, F.S., and Sun, D.Y., 2000, Does aluminum inhibit pollen germination via extracellular calmodulin? Plant Cell Physiol., 41: 372–376.

    Article  PubMed  CAS  Google Scholar 

  • Matoh T, 1997, Boron in plant cell walls. Plant Soil, 193: 59–70.

    Article  CAS  Google Scholar 

  • Matoh T, Takasaki M, Takabe K, Kobayashi M, 1998, Immunocytochemistry of rhamnogalactouronan II in cell walls of higher plants. Plant Cell Physiol, 39: 483–491.

    Article  CAS  Google Scholar 

  • McDowell, J.M., An, Y.Q., Huang, S., McKinney, E.C. and Meagher, R.B., 1996, The Arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol, 111:699–711.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D., Hable, W., Gottwald, J., Ellard-Ivey, M., Demura, T., Lomax, T., and Carpita, N., 1997, Connections: the hard wiring of the plant cell for perception, signalling, and response. Plant Cell, 9: 2105–2117.

    PubMed  CAS  Google Scholar 

  • Mühling, K.H., Wimmer, M., and Goldbach, H.E., 1998, Apoplastic and membraneassociated Ca2+ in leaves and roots as affected by boron deficiency. Physiol. Plant., 102: 179–184.

    Article  Google Scholar 

  • Neukom, H., 1976, Chemistry and properties of the non-starchy polysaccharides (NPS) of wheat flour. Lebens. Wiss. Technol.,9: 143–148.

    CAS  Google Scholar 

  • O’Neill, M.A., Warrenfeltz, D., Kates, K., Pellerin, P., Doco, T., Darvill, A.G.and Albersheim, P., 1996, Rhamnogalacturonan-II, a pectic polysaccaraide in the walls of growing plant cells, forms a dimer that is covalently cross linked by a borate ester. J. Biol. Chem., 271: 22923–22930 and correction: J. Biol. Chem., 272 (1997): 3869.

    Article  Google Scholar 

  • O’Neill, M.A., Eberhard, S., Albersheim, P., and Darvill, A.G., 2001, Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294: 846–849.

    Article  Google Scholar 

  • Obermeyer, G., Kriechbaumer, R., Strasser, D., Maschessnig, A., and Bentrup, F.-W., 1996, Boric acid stimulates the plasma membrane H+ -ATPase of ungerminated lily pollen grains. Physiol. Plant., 98:281–290.

    Article  CAS  Google Scholar 

  • Perez, H.E., Sanchez, N., Vidali, L., Hernandez L.M., Lara, M. and Sanchez, F., 1994, Actin isoforms in non-infected roots and symbiotic root nodules of Paseolus vulgaris L. Planta, 193:51–56.

    Article  CAS  Google Scholar 

  • Pierson, E.S., Smith, P.J.S., Shipley, A.M., Jaffe, L.F., Cresti, M., and Hepler, P.K., 1993, Ca2+ fluxes around pollen grains and pollen tubes of lily; normal development and effects of thermal shock, BAPTA-type buffer microinjection and depletion of boric acid from the medium. Biol. Bull, 185, 302–303.

    Google Scholar 

  • Rajaratnam, J.A., and Lowry, J.B., 1974, The role of boron in the oil palm. Ann. Bot., 38: 193–200.

    CAS  Google Scholar 

  • Ralston, N.V.C., and Hunt, C.D., 2001, Diadenosine phosphates and S-adenosylmethionine: novel boron binding biomolecules detected by capillary electrophoresis. Biochim. Biophys. Acta, 1527: 20–30.

    Article  PubMed  CAS  Google Scholar 

  • Schon, M. K., Novacky, A. and Blevins, D. G., 1990, Boron induces hyperpolarization of sunflower root cell membranes and increases membrane permeability to K+. Plant Physiol., 93: 566–571.

    Article  PubMed  CAS  Google Scholar 

  • Seagull, R.W., 1989, The plant cytoskeleton. Crit. Rev. Plant Sci., 8: 131–167.

    Article  CAS  Google Scholar 

  • Shkolnik, M. Y., 1984, Trace Elements in Plants. Elsevier, Amsterdam, Oxford, New York, Tokyo.

    Google Scholar 

  • Sivaguru, M., and Horst, W.J., 1998, The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol., 116: 155–163.

    Article  CAS  Google Scholar 

  • Sivaguru, M., Baluška, F., Volkmann, D., Felle, H.H., and Horst, W.J., 1999, Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiol., 119: 1073–1082.

    Article  PubMed  CAS  Google Scholar 

  • Sivaguru, M., Fujiwara, T., Šamaj, J., Baluška, F., Yang, Z., Osawa, H., Maeda, T., Mori, T., Volkmann, D., and Matsumoto, H., 2000, Aluminum-induced 1 →3-ß-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol., 124: 991–1005.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K.W., and Johnson, S.L., 1976, Borate inhibition of yeast alcohol dehydrogenase, Biochem. 15: 560–565.

    Article  CAS  Google Scholar 

  • Tang, P.M., and De la Fuente, R.K., 1986a, The transport of indole-3-acetic acid in boron- and calcium- deficient sunflower hypocotyl segments. Plant Physiol, 81: 646–650.

    Article  PubMed  CAS  Google Scholar 

  • Tang, P.M., and De la Fuente, R.K., 1986b, Boron and calcium sites involved in indole-3- acetic acid transport in sunflower hypocotyl segments. Plant Physiol, 81: 651–655.

    Article  PubMed  CAS  Google Scholar 

  • Teasdale, R.D., and Richards, D.K., 1990, Boron deficiency in cultured pine cells. Plant Physiol, 1071–1077.

    Google Scholar 

  • Van de Venter, H.A., and Currier, H.B., 1977, The effect of boron deficiency on callose formation and 14C translocation in bean (Phaseolus vulgaris L.) and cotton (Gossypium hirsutum L.). Amer. J. Bot., 64: 861–865.

    Article  Google Scholar 

  • Volkmann, D., and Baluška, F., 1999, The actin cytoskeleton in plants: from transport networks to signalling networks. Microsc. Res. Tech., 47: 135–154.

    Article  PubMed  CAS  Google Scholar 

  • Wimmer, M.A., and Goldbach, H.E., 1999, Influence of Ca2+ and pH on the stability of different boron fractions in intact roots of Vicia faba L. Plant Biol, 1: 632–637.

    Article  CAS  Google Scholar 

  • Wyatt, S.E., and Carpita, N.C., 1993, The plant cytoskeleton - cell wall continuum. Trends Cell Biol, 3: 413–417.

    Article  PubMed  CAS  Google Scholar 

  • Yamanouchi, M., 1973, The role of boron in higher plants (Part 2). The influence of boron on the formation of pectic substances. Bull. Fac. Agri. Tottori Univ., XXV: 21–27.

    Google Scholar 

  • Yamauchi, T., Hara, T., and Sonoda, Y., 1986, Distribution of calcium and boron in the pectin fraction of tomato leaf cell wall. Plant Cell Physiol, 27: 729–732.

    CAS  Google Scholar 

  • Yang, X.-D., Sun, S.-Q., and Li, Y.-Q., 1999, Boron deficiency causes changes in the distribution of major polysaccharides of pollen tube wall. Acta Botanica Sinica, 41: 1169– 1176.

    CAS  Google Scholar 

  • Yu Q, Baluška F, Jasper F, Menzel D, Volkmann D Goldbach HE, 2001, Short-term boron deprivation enhances levels of cytoskeletal proteins and their polymerization in maize, but not zucchini, root apices. (submitted)

    Google Scholar 

  • Yu Q, Wingender R, Schule M, Baluška F, Goldbach H, 2001, Short-term boron deprivation induces increased levels of cytoskeletal proteins in Arabidopsis roots. Plant Biol, 6: 1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldbach, H.E. et al. (2002). Rapid Responses of Plants to Boron Deprivation. In: Goldbach, H.E., Brown, P.H., Rerkasem, B., Thellier, M., Wimmer, M.A., Bell, R.W. (eds) Boron in Plant and Animal Nutrition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0607-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0607-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5155-9

  • Online ISBN: 978-1-4615-0607-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics