Stability of the Borate-ester Cross-link in Rhamnogalacturonan II at Low pH and Calcium Activity in muro and in vivo

  • Rudolf Ehwald
  • Axel Fleischer
  • Heidemarie Schneider
  • Malcolm O’Neill


The discovery by Matoh and colleagues (Matoh et al. 1993, Kobayashi et al. 1996) that most of the boron bound to higher plant cell walls is present as a borate-ester that covalently cross links two chains of the pectic polysaccharide rhamnogalacturonan II (dRG-II-B), became central for our present understanding of the physiological functions of this microelement. Many, if not all, of the known functions of apoplastic boron may be related to the covalent cross-linking of pectin by RG-II-dimers. The stability of this cross-link may also provide an explanation of some of the physiologically essential effects of apoplastic calcium ions including the well-known antagonism of extracellular calcium and protons. Isolated dRG-II-B is stable at pH > 3 and its formation in vitro is accelerated by polyvalent cations (O’Neill et al. 1996, Ishii et al. 1999). In muro the stability of borate cross link is believed to be increased by the presence of firmly complexed calcium ions (Matoh et al. 1996, Matoh and Kobayashi 1998, Kobayashi et al. 1999).


Boric Acid Chenopodium Album Pectic Polysaccharide Pectin Content Borate Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baron-Epel, 0., Gharyal, P.K., Schindler, M., 1988, Pectins as mediators of wall porosity in soybean cells. Planta 175: 389–395.CrossRefGoogle Scholar
  2. Carpita, N.C., Gibeaut, D.M., 1993, Structural models of primary cell walls in flowering plants - consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30.PubMedCrossRefGoogle Scholar
  3. Ehwald, R., Heese, P., Klein, U., 1991, Determination of the size limits of membrane separation in vesicle chromatography by fractionation of polydisperse dextran. J. Chromatogr. 542: 239–245.CrossRefGoogle Scholar
  4. Ehwald, R., Woehlecke, H., and Titel, C., 1992, Cell wall microcapsules with different porosity from suspension cultured Chenopodium album.Phytochemistry 31: 3033–3038.CrossRefGoogle Scholar
  5. Fleischer, A., Titel, C, Ehwald, R., 1998, The boron requirement and cell wall properties of growing and stationary suspension-cultured Chenopodium album L. cells. Plant Physiol 117: 1401–1410.PubMedCrossRefGoogle Scholar
  6. Fleischer, A., O’Neill, M.A., Ehwald, R., 1999, The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol. 121: 829–838.PubMedCrossRefGoogle Scholar
  7. Fleischer, A., 2000, Borwirkungen an primären Zellwanden pflanzlicher Zellen. PhD Thesis (Dissertationsschrift), Humboldt-Universität zu Berlin, Math Nat Fak I, Institut für BiologicGoogle Scholar
  8. Ishii, T., Matsunaga, T., Pellerin, P., O’Neill, M.A., Darvill, A., Albersheim, P., 1999, The plant cell wall polysaccharide rhamnogalacturonan II self-assembles into a covalently cross-linked dimer.J. Biol. Chem. 274: 13098–13104.PubMedCrossRefGoogle Scholar
  9. Jarvis, M.C. , 1984, Structure and properties of pectin gels in plant cell walls.Plant Cell Environ. 7: 153–164.Google Scholar
  10. Kobayashi, M., Matoh, T., Azuma, J., 1996, Two chains of rhamnogalacturonan II are cross-linked by borate diol ester bonds in higher plant cell walls. Plant Physiol. 110: 1017–1020.PubMedGoogle Scholar
  11. Kobayashi, M., Nakagawa, H., Asaka, T., Matoh, T., 1999, Borate-rhamnogalacturonan II bonding reinforced by Ca2+ retains pectic polysaccharides in higher-plant cell walls.Plant Physiol. 119: 199–240.PubMedCrossRefGoogle Scholar
  12. Matoh, T., Ishigaki, K., Ohno, K., Azuma, J., 1993, Isolation and characterization of a boron- polysaccharide complex from radish roots. Plant Cell Physiol. 34: 639–642.Google Scholar
  13. Matoh, T., Kobayashi, M., 1998, Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res. 111: 179–190.CrossRefGoogle Scholar
  14. O’Neill, M.A., Warrenfeltz, D., Kates, K., Pellerin, P., Doco, T., Darvill, A.G., and Albersheim, P., 1996 Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cells, forms a dimer that is covalently cross-linked by a borate ester. J. Biol. Chem. 271: 22923–22930, and Correction: 1997, J. Biol. Chem. 272: 3869.PubMedCrossRefGoogle Scholar
  15. Rees, D.A., 1977, Polysaccharide Shapes. London: Chapmann and Hall.CrossRefGoogle Scholar
  16. Reiter, W.D., Chappie, C.C.S., Sommerville, C.R., 1993, Altered growth and cell-walls in a fucose-deficient mutant of Arabidopsis. Science 261: 1032–1035.PubMedCrossRefGoogle Scholar
  17. Titel, C, Woehlecke, H., Afifi, I., Ehwald, R., 1997, Dynamics of limiting cell wall porosity in plant suspension cultures. Planta 203: 320–326.CrossRefGoogle Scholar
  18. Woehlecke, H., 1996, Die Dynamik der Ultrafiltereigenschaften pflanzlicher Zellwände. PhD Thesis (Dissertationsschrift), Humboldt-Universität zu Berlin, Math Nat Fak I, Institut für BiologicGoogle Scholar
  19. Woehlecke, H., Ehwald, R., 1995, Characterization of size-permeation limits of cell walls and porous separation materials by high-performance size-exclusion chromatography.J. Chromatogr. 708: 263–271.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Rudolf Ehwald
    • 1
  • Axel Fleischer
    • 1
  • Heidemarie Schneider
    • 1
  • Malcolm O’Neill
    • 2
  1. 1.Humboldt-Universität zu BerlinInstitut für BiologieBerlinGermany
  2. 2.Complex Carbohydrate Research CenterThe University of GeorgiaAthensUSA

Personalised recommendations