Skip to main content

Pyridoxal Isonicotinoyl hydrazone and its analogues

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 509))

Abstract

Iron is a precious metal for the organism because of its unsurpassed versatility as a biological catalyst. It is involved in a broad spectrum of essential biological functions such as oxygen transport (hemoglobin), electron transfer (mitochondrial heme and non-heme Fe proteins essential for energy production) and DNA synthesis (ribonucleotide reductase), to name just a few. However, the chemical properties of iron which allow this versatility also lead to the paradoxical situation that acquisition by the organism of an abundant element is exceedingly difficult. At pH 7.4 and physiological oxygen tension, the relatively soluble ferrous ion (Fe2+) is readily oxidized to ferric ion (Fe3+) which is susceptible to hydrolysis, forming virtually insoluble ferric hydroxides. The concentration of aquated Fe3+ (pH 7.4) cannot exceed 10-17 M. Moreover, unless bound to specific ligands, iron plays a key role in the formation of harmful oxygen radicals which ultimately cause oxidative damage to vital cell structures. Because of this virtual insolubility and potential toxicity, specialized mechanisms and molecules for the acquisition, transport, and storage of iron in a soluble nontoxic form have evolved to meet cellular and organismal iron requirements. In addition, organisms are equipped with sophisticated mechanisms that prevent the expansion of the catalytically active intracellular iron pool, while maintaining sufficient concentrations of the metal for metabolic use.13 However, despite these homeostatic mechanisms, organisms often face the threat of either iron deficiency or iron overload.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rouault T, Klausner R. Regulation of iron metabolism in eukaryotes.Curr. Top. Cell Regul.35, 1–19 (1997).

    CAS  Google Scholar 

  2. Richardson DR, Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells.Biochim. Biophys. Acta.1331, 1–40 (1997).

    CAS  Google Scholar 

  3. Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism.lnt. J. Biochem. Cell Biol.33, 940–959 (2001).

    CAS  Google Scholar 

  4. Hershko C, Link G, Cabantchik I. Pathophysiology of iron overload.Ann. N.Y. Acad. Sci.850, 191–201 (1998).

    CAS  Google Scholar 

  5. Porter JB. Practical management of iron overload.Br. J. Haematol.115, 239–252 (2001).

    CAS  Google Scholar 

  6. Hershko C, Konijn AM, Link G. Iron chelators for thalassaemia.Br. J. Haematol. 101399–406 (1998).

    CAS  Google Scholar 

  7. Kontoghiorghes GJ, Aldouri MA, Hoffbrand AV, Barr J, Wonke B, Kourouclaris T, Sheppard L. Effective chelation of iron in beta thalassaemia with the oral chelator 1,2-dimethyl-3-hydroxypyrid-4-one.Br. Med. J.295, 1509–1512 (1987).

    CAS  Google Scholar 

  8. Olivieri NF, Koren G, St Louis P, Freedman MH, McClelland RA, Templeton DM. Studies of the oral chelator 1,2-dimethyl-3-hydroxypyrid-4-one in thalassemia patients.Semin. Hematol.27, 101–104 (1990).

    CAS  Google Scholar 

  9. Berdoukas V, Bentley P, Frost H, Schnebli HP. Toxicity of oral iron chelator LI.Lancet.341, 1088 (1993).

    CAS  Google Scholar 

  10. al Refaie FN, Wonke B, I-loftbrand AV. Deferiprone-associated myelotoxicity.Eur. J. Haematol.53, 298–301 (1994).

    Google Scholar 

  11. Refaie FN, Hoffbrand AV. Oral iron-chelating therapy: the LI experience.Bailliere’s Clin. Haematol.7, 941–963 (1994).

    Google Scholar 

  12. Olivieri NF, Brittenham GM. Iron-chelating therapy and the treatment of thalassemia.Blood.89, 739–761 (1997).

    CAS  Google Scholar 

  13. Olivieri NF, Brittenham GM, McLaren CE, Templeton DM, Cameron RG, McClelland RA, Burt A.D, Fleming K.A, Long-term safety and effectiveness of iron-chelation therapy with deferiprone for thalassemia major.N. Engl. J. Med.339, 417–423 (1998).

    CAS  Google Scholar 

  14. Richardson DR. The controversial role of deferiprone in the treatment of thalassemia.J. Lab. Clin. Med.137, 324–329 (2001).

    CAS  Google Scholar 

  15. Pippard MJ, Weatherall DJ. Oral iron chelation therapy for thalassaemia: an uncertain scene.Br. J. Haematol.111, 2–5 (2000).

    CAS  Google Scholar 

  16. Ponka P, Borova J, Neuwirt J, Fuchs O. Mobilization of iron from reticulocytes. Identification of pyridoxal isonicotinoyl hydrazone as a new iron chelating agent.FEES Lett.97, 317–321 (1979).

    CAS  Google Scholar 

  17. Ponka P, Neuwirt J, Borova J, Fuchs O. Control of iron delivery to haemoglobin in erythroid cells.Ciba Foundation Symposium 51 (new series).167–200 (1977).

    CAS  Google Scholar 

  18. Ponka P, Borova J, Neuwirt J, Fuchs O, Necas E. A study of intracellular iron metabolism using pyridoxal isonicotinoyl hydrazone and other synthetic chelating agents.Biochim. Biophys. Acta.586, 278–297 (1979).

    CAS  Google Scholar 

  19. Hoy T, Humphrys J, Jacobs A, Williams A, Ponka P. Effective iron chelation following oral administration of an isoniazid-pyridoxal hydrazone.Br. J. Haematol.43, 443–449 (1979).

    CAS  Google Scholar 

  20. Cikrt M, Ponka P, Necas E, Neuwirt J. Biliary iron excretion in rats following pyridoxal isonicotinoyl hydrazone.Br. J. Haematol.45, 275–283 (1980).

    CAS  Google Scholar 

  21. Hershko C, Avramovici-Grisaru S, Link G, Gelfand L, Sarel S. Mechanism ofin vivoiron chelation by pyridoxal isonicotinoyl hydrazone and other imino derivatives of pyridoxal.J. Lab. Clin. Med.98, 99–108 (1981).

    CAS  Google Scholar 

  22. Pippard MJ, Johnson DK, Finch CA. A rapid assay for evaluation of iron-chelating agents in rats.Blood.58, 685–692 (1981).

    CAS  Google Scholar 

  23. Johnson DK, Pippard MJ, Murphy TB, Rose NJ. Anin vivoevaluation of iron-chelating drugs derived from pyridoxal and its analogs.J. Pharm. Exp. Ther.221, 399–403 (1982).

    CAS  Google Scholar 

  24. Williams A, Hoy T, Pugh A, Jacobs A. Pyridoxal complexes as potential chelating agents for oral therapy in transfusional iron overload.J. Pharm. Pharmacol.34, 730–732 (1982).

    CAS  Google Scholar 

  25. Avramovici-Grisaru S, Sarel S, Link G, Hershko C. Syntheses of iron bis(pyridoxal isonicotinoylhydrazone)s and thein vivoiron-removal properties of some pyridoxal derivatives.J. Med. Chem.26, 298–302 (1983).

    CAS  Google Scholar 

  26. Webb J, Vitolo ML. Pyridoxal isonicotinoyl hydrazone (PIH): a promising new iron chelator.Birth Defects Orig. Art. Ser.23, 63–70 (1988).

    CAS  Google Scholar 

  27. Vitolo ML, Clare BW, Hefter GT, Webb J. Chemical studies of pyridoxal isonicotinoyl hydrazone relevant to its clinical evaluation.Birth Defects Orig. Artic. Ser.23, 71–79 (1988).

    CAS  Google Scholar 

  28. Richardson DR, Vitolo LW, Baker E, Webb J. Pyridoxal isonicotinoyl hydrazone and analogues. Study of their stability in acidic, neutral, and basic aqueous solutions by ultraviolet-visible spectrophotometry.Biol. Met.2, 69–76 (1989).

    CAS  Google Scholar 

  29. Richardson DR, Hefter GT, May PM, Webb J, Baker E. Iron chelators of the pyridoxal isonicotinoyl hydrazone class. Ill. Formation constants with calcium(II), magnesium(Il) and zinc(II).Biol. Met.2, 161–167 (1989).

    CAS  Google Scholar 

  30. Sarel S, Cohen S, Avramovici-Grisaru S. Iron chelators of the class of pyridoxal acylhydrazone - part 5 - crystal structure and patterns of hydrogen bonding in pyridoxal isonicotinoyl hydrazone (PIH).Heterocycles.47, 1033–1042 (1998).

    CAS  Google Scholar 

  31. Souron JP, Quarton M, Robert F, Lyubchova A. Cosse-Barbi A, Doucet JP. Pyridoxal isonicotinoyl hydrazone (PIH), a synthetic ion-chelating agent.Acta. Cryst. Sect. C.51, 2179–2182 (1995).

    Google Scholar 

  32. Colonna P, Cosse-Barbi A, Massat A, Doucet JP. IR studies of iron complexes with pyridoxal isonicotinoyl hydrazone and 3 other similar chelating agents.Spectroscopy Lett.26. 1065–1072 (1993).

    CAS  Google Scholar 

  33. Morgan EH. Chelator-mediated iron efflux from reticulocytes.Biochim. Biophys. Acta.733, 39–50 (1983).

    CAS  Google Scholar 

  34. Huang AR, Ponka P. A study of the mechanism of action of pyridoxal isonicotinoyl hydrazone at the cellular level using reticulocytes loaded with non-heme “Fe.Biochim Biophys. Acta.757, 306–315 (1983).

    CAS  Google Scholar 

  35. Ponka P, Grady RW, Wilczynska A, Schulman HM. The effect of various chelating agents on the mobilization of iron from reticulocytes in the presence and absence of pyridoxal isonicotinoyl hydrazone.Biochim. Biophys. Acta.802, 477–489 (1984).

    CAS  Google Scholar 

  36. Baker E, Vitolo ML, Webb J. Iron chelation by pyridoxal isonicotinoyl hydrazone and analogues in hepatocytes in culture.Biochem. Pharmacol.34, 3011–3017 (1985).

    CAS  Google Scholar 

  37. Crowe A, Morgan EH. Effects of chelators on iron uptake and release by the brain in the rat.Neurochem. Res.19, 71–76 (1994).

    CAS  Google Scholar 

  38. Hallmann R, Savigni DL, Morgan EH, Baker E. Characterization of iron uptake from transferrin by murine endothelial cells.Endothelium.7, 135–147 (2000).

    CAS  Google Scholar 

  39. Ponka P, Richardson D, Baker E, Schulman HM, Edward JT. Effect of pyridoxal isonicotinoyl hydrazone and other hydrazones on iron release from macrophages, reticulocytes and hepatocytes.Biochim. Biophys. Acta.967, 122–129 (1988).

    CAS  Google Scholar 

  40. Baker E, Richardson D, Gross S, Ponka P. Evaluation of the iron chelation potential of hydrazones of pyridoxal, salicylaldehyde and 2-hydroxy-1 -naphthylaldehyde using the hepatocyte in culture.Hepatology.15, 492–501 (1992).

    CAS  Google Scholar 

  41. Blaha K, Cikrt M, Nerudova J, Fornuskova H, Ponka P. Biliary iron excretion in rats following treatment with analogs of pyridoxal isonicotinoyl hydrazone.Blood.91, 4368–4372 (1998).

    CAS  Google Scholar 

  42. Richardson DR, Ponka P. Pyridoxal isonicotinoyl hydrazone and its analogs: potential orally effective ironchelating agents for the treatment of iron overload disease.J. Lab. Clin. Med.131, 306–315 (1998).

    CAS  Google Scholar 

  43. Richardson DR, Mouralian C, Ponka P, Becker E. Development of potential iron chelators for the treatment of Friedreich’s ataxia: ligands that mobilize mitochondrial iron.Biochim. Biophys. Acta.1536, 133–140 (2001).

    CAS  Google Scholar 

  44. Hermes-Lima M, Wang EM, Schulman HM, Storey KB, Ponka P. Deoxyribose degradation catalyzed by Fe(III)EDTA: kinetic aspects and potential usefulness for submicromolar iron measurements.Mol. Cell. Biochem.137, 65–73 (1994).

    CAS  Google Scholar 

  45. Bhattacharya M, Ponka P, Hardy P, Hanna N, Varma DR, Lachapelle P, Chemtob S, Prevention of postasphyxia electroretinal dysfunction with a pyridoxal hydrazone.Free Rad. Biol. Med.22, 11–16 (1997).

    CAS  Google Scholar 

  46. Hermes-Lima M, Nagy E, Ponka P, Schulman HM. The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) protects plasmid pUC-18 DNA against *OH-mediated strand breaks.Free Rad. Biol. Med.25, 875–880 (1998).

    CAS  Google Scholar 

  47. Hermes-Lima M, Santos NC, Yan J, Andrews M, Schulman HM, Ponka P. EPR spin trapping and 2-deoxyribose degradation studies of the effect of pyridoxal isonicotinoyl hydrazone (PIH) on *OH formation by the Fenton reaction.Biochim. Biophys. Acta.1426, 475–482 (1999).

    CAS  Google Scholar 

  48. Hermes-Lima M, Ponka P, Schulman HM. The iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and its analogues prevent damage to 2-deoxyribose mediated by ferric iron plus ascorbate.Biochim. Biophys. Acta.1523, 154–160 (2000).

    CAS  Google Scholar 

  49. Horackova M, Ponka P, Byczko Z. The antioxidant effects of a novel iron chelator salicylaldehyde isonicotinoyl hydrazone in the prevention of H(2)O(2) injury in adult cardiomyocytes.Cardiovasc. Res.47,529–536 (2000).

    CAS  Google Scholar 

  50. Tsafack A, Loyevsky M, Ponka P, Cabantchik ZI. Mode of action of iron (Ill) chelators as antimalarials. IV. Potentiation of desferal action by benzoyl and isonicotinoyl hydrazone derivatives.J. Lab. Clin. Med.127, 574–582 (1996).

    CAS  Google Scholar 

  51. Golenser J, Domb A, Teomim D, Tsafack A, Nisim 0, Eling W, Cabantchik ZI, The treatment of animal models of malaria with iron chelators by use of a novel polymeric device for slow drug release. JPharm. Exp. Ther.281, 1127–1135 (1997).

    CAS  Google Scholar 

  52. Richardson DR, Tran EH, Ponka P. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents.Blood.86, 4295–4306 (1995).

    CAS  Google Scholar 

  53. Ponka P, Schulman HM, Wilczynska A. Ferric pyridoxal isonicotinoyl hydrazone can provide iron for heme synthesis in reticulocytes.Biochim. Biophys. Acta.718, 151–156 (1982).

    CAS  Google Scholar 

  54. Ponka P, Schulman HM. Regulation of heme synthesis in erythroid cells: hemin inhibits transferrin iron utilization but not protoporphyrin synthesis.Blood.65, 850–857 (1985).

    CAS  Google Scholar 

  55. Ponka P, Schulman HM. Acquisition of iron from transferrin regulates reticulocyte heme synthesis.J. Biol. Chem.260, 14717–14721 (1985).

    CAS  Google Scholar 

  56. Laskey JD, Ponka P, Schulman HM. Control of heme synthesis during Friend cell differentiation: role of iron and transferrin.J. Cell. Physiol.129, 185–192 (1986).

    CAS  Google Scholar 

  57. Landschulz W, Thesleff I, Ekblom P. A lipophilic iron chelator can replace transferrin as a stimulator of cell proliferation and differentiation.J. Cell. Biol.98, 596–601 (1984).

    CAS  Google Scholar 

  58. Thesleff I, Partanen AM, Landschulz W, Trowbridge IS, Ekblom P. The role of transferrin receptors and iron delivery in mouse embryonic morphogenesis.Differentiation.30, 152–158 (1985).

    CAS  Google Scholar 

  59. Ekblom P, Landschulz W, Andersson LC. A lipophilic iron chelator induces an enhanced proliferation of human erythroleukaemia (HEL) cells.Scand. J. Haematol.36, 258–262 (1986).

    CAS  Google Scholar 

  60. Landschulz W, Ekblom P. Iron delivery during proliferation and differentiation of kidney tubules.J. Biol. Chem.260, 15580–15584 (1985).

    CAS  Google Scholar 

  61. Forsbeck K, Bjelkenkrantz K, Nilsson K. Role of iron in the proliferation of the established human tumor cell lines U-937 and K-562: effects of suramin and a lipophilic iron chelator (PIH).Scand. J.Haematol.37, 429437 (1986).

    Google Scholar 

  62. Laskey J, Webb I, Schulman HM, Ponka P. Evidence that transferrin supports cell proliferation by supplying iron for DNA synthesis.Exp. Cell Res.176, 87–95 (1988).

    CAS  Google Scholar 

  63. Partanen AM, Thesleff I. Transferrin and tooth morphogenesis: retention of transferrin by mouse embryonic teeth in organ culture.Differentiation.34, 25–31 (1987).

    CAS  Google Scholar 

  64. Tsao MS, Sanders GH, Grisham JW. Regulation of growth of cultured hepatic epithelial cells by transferrin.Exp. Cell Res.171, 52–62. 1987.

    CAS  Google Scholar 

  65. Brock JH, Stevenson J. Replacement of transferrin in serum-free cultures of mitogen-stimulated mouse lymphocytes by a lipophilic iron chelator.Immunol. Lett.15, 23–25. 1986.

    Google Scholar 

  66. Djeha A, Brock JH. Effect of transferrin, lactoferrin and chelated iron on human T-lymphocytes.Br. J. Haematol.80, 235–241 (1992).

    Google Scholar 

  67. Avramovici-Grisaru S, Sarel S, Cohen S, Bauminger RE. The synthesis, crystal and molecular structure, and oxidation state of iron complex from pyridoxal isonicotinoyl hydrazone and ferrous sulphate.Israel. J Chem.25, 288–292 (1985).

    CAS  Google Scholar 

  68. Murphy TB, Johnson DK, Rose NJ, Aruffo A, Schomaker V. Structural studies of iron(Ill) complexes of the new iron-binding drug, pyridoxal isonicotinoyl hydrazone.Inorg. Chim. Acta66, L67–L68. (1982).

    CAS  Google Scholar 

  69. Becker E, Richardson DR. Development of novel aroylhydrazone ligands for iron chelation therapy: 2pyridylcarboxaldehyde isonicotinoyl hydrazone analogs.J. Lab. Clin. Med.134, 510–521 (1999).

    CAS  Google Scholar 

  70. Richardson DR, Becker E, Bernhardt PV. The biologically active iron chelators 2-pyridylcarboxaldehyde isonicotinoylhydrazone, 2-pyridylcarboxaldehyde benzoylhydrazone monohydrate and 2-furaldehyde isonicotinoylhydrazone.Acta. Cryst. Sect. C.55, 2102–2105 (1999).

    Google Scholar 

  71. Vitolo ML, Hefter GT, Clare BW, Webb J. Iron chelators of the pyridoxal isonicotinoyl hydrazone class Part II. Formation constants with iron(III) and iron(11).Inorg. Chim. Acta.170, 171–176 (1990).

    CAS  Google Scholar 

  72. Zak O, Leibman A, Aisen P. Metal-binding properties of a single-sited transferrin fragment.Biochim. Biophys. Acta.742, 490–495 (1983).

    CAS  Google Scholar 

  73. Richardson DR, Vitolo ML, Hefter GT, May PM, Clare BW, Webb J. Iron chelators of the pyridoxal isonicotinoyl hydrazone class Part 1. Ionization characteristics of the 1igands and their relevance to biological properties.Inorg. Chim. Acta170, 165–170 (1990).

    CAS  Google Scholar 

  74. Schmidt RF, Thews J.Human Physiology(Springer-Verlag, New York, 1983).

    Google Scholar 

  75. Travis S, Menzies IS. Intestinal permeability: functional assessment and significance.Clin. Sci.82, 471–480 (1992).

    CAS  Google Scholar 

  76. Maxton DG, Bjarnson I, Reynolds AP, Catt SD, Peters T.1, Menzies IS. “Cr-labelled EDTA, L-rhamnose and polyethyleneglycol 400 as probe markers for assessmentin vivoof human intestinal permeability.Clin. Sci.71, 71–80 (1986).

    CAS  Google Scholar 

  77. Sah PPT. Nicotinyl and isonicotinyl hydrazones of pyridoxal.J. Am. Chem. Soc.76, 300 (1954).

    CAS  Google Scholar 

  78. Brittenham GM. Pyridoxal isonicotinoyl hydrazone: an effective iron-chelator after oral administration.Semin. Hematol.27, 112–116 (1990).

    CAS  Google Scholar 

  79. Lyubchova A, Cosse-Barbi A, Doucet JP, El Hage Chahine JM. The interaction of salicylaldehydebenzoylhydrazone with Ca“ and Mg”. A spectrophotometric study.J. Chim. Phys.94, 11951207. (1997).

    Google Scholar 

  80. Singh G, Shastry PSSJ, Lonibala RK, Rao TR. Coordination behaviour of pyridoxalisonicotinoyl hydrazone towards some 3d-metal ions.Synth. React. Inorg. Met. -Org. Chem.22:1041–1059 (1992).

    CAS  Google Scholar 

  81. Edward JT, Ponka P, Richardson DR. Partition coefficients of the iron(III) complexes of pyridoxal isonicotinoyl hydrazone and its analogs and the correlation to iron chelation efficacy.Biometals.8, 209–217 (1995).

    CAS  Google Scholar 

  82. Edward JT, Chubb FL, Sangster J. Iron chelators of the pyridoxal isonicotinoyl hydrazone class. Relationship of the lipophilicity of the apochelator to its ability to mobilize iron from reticulocytesin vitro: reappraisal of reported partition coefficients.Can. J. Physiol. Pharmacol. 75, 1362–1368 (1997).

    CAS  Google Scholar 

  83. Lea A, Hansch C, Elkins D. Partition coefficients and their uses.Chem. Rev.71, 525–555 (1971).

    Google Scholar 

  84. Hider RC. Potential protection from toxicity by oral iron chelators.Toxicol. Lett.83, 961–967 (1995).

    Google Scholar 

  85. Pappenheimer JR, Kamovsky ML, Maggio JE. Absorption and excretion of undegradable peptides: role of lipid solubility and net charge.J. Pharm. Exp. Ther.280, 292–300 (1997).

    CAS  Google Scholar 

  86. Ponka P, Wilczynska A, Schulman HM. Iron utilization in rabbit reticulocytes. A study using succinylacetone as an inhibitor of heme synthesis.Biochim. Biophys. Acta.720, 96–105 (1982).

    CAS  Google Scholar 

  87. Borova J, Ponka P, Neuwirt J. Study of intracellular iron distribution in rabbit reticulocytes with normal and inhibited heme synthesis.Biochim. Biophys. Acta.320, 143–156 (1973).

    CAS  Google Scholar 

  88. Ponka P, Neuwirt J. The use of reticulocytes with high non-haem iron pool for studies of regulation of haem synthesis.Br. J. Haematol.19, 593–604 (1970).

    CAS  Google Scholar 

  89. Richardson DR. Mobilization of iron from neoplastic cells by some iron chelators is an energy-dependent process.Biochim. Biophys. Acta.1320, 45–57 (1997).

    CAS  Google Scholar 

  90. Harris WR, Carrano CJ, Raymond KN. Co-ordination chemistry of microbial iron transport compounds: Isolation, characterization, and formation constants of ferric aerobactin.J. Am. Chem. Soc.101, 2722–2727 (1979).

    CAS  Google Scholar 

  91. Morgan EH. A study of iron transfer from rabbit transferrin to reticulocytes using synthetic chelating agents.Biochim. Biophys. Acta.244, 103–116 (1971).

    CAS  Google Scholar 

  92. Martell AE, Smith RM.Critical Stability Constants(New York, 1977).

    Google Scholar 

  93. Ponka P, Baker E. The effect of the iron(111) chelator, desferrioxamine, on iron and transferrin uptake by the human malignant melanoma cell.Cancer Res.54, 685–689 (1994).

    Google Scholar 

  94. Bakkeren DL, de Jeu-Jaspars CMH, Kroos MJ, van Eijk HG. Release of iron from endosomes is an early step in the transferrin cycle.Int. J. Biochem.19, 179–186 (1987).

    CAS  Google Scholar 

  95. Edward JT, Gauthier M, Chubb FL, Ponka P. Synthesis of new acylhydrazones as iron-chelating compounds.J. Chem. Eng. Data.33, 538–540 (1988).

    CAS  Google Scholar 

  96. Richardson DR, Milnes K. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents II: the mechanism of action of ligands derived from salicylaldehyde benzoyl hydrazone and 2-hydroxy-l-naphthylaldehyde benzoyl hydrazone.Blood.89, 3025–3038 (1997).

    CAS  Google Scholar 

  97. Kim S, Ponka P. Effects of interferon-gamma and lipopolysaccharide on macrophage iron metabolism are mediated by nitric oxide-induced degradation of iron regulatory protein 2.J. Biol. Chem.275, 6220–6226 (2000).

    CAS  Google Scholar 

  98. Darnell G, Richardson DR. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents Ill: The effect of the ligands on molecular targets involved in proliferation.Blood.94, 781–792 (1999).

    CAS  Google Scholar 

  99. Eisenstein RS. Iron regulatory proteins and the molecular control of mammalian iron metabolism.Ann. Rev. Nutr.20, 627–662 (2000).

    CAS  Google Scholar 

  100. Richardson DR, Ponka P. The iron metabolism of the human neuroblastoma cell: lack of relationship between the efficacy of iron chelation and the inhibition of DNA synthesis.J. Lab. Clin. Med.124, 660–671 (1994).

    CAS  Google Scholar 

  101. Ponka P, Richardson DR, Edward JT, Chubb FL. Iron chelators of the pyridoxal isonicotinoyl hydrazone class. Relationship of the lipophilicity of the apochelator to its ability to mobilise iron from reticulocytesin vitro. Can. J. Physiol. Pharmacol.72, 659–666 (1994).

    CAS  Google Scholar 

  102. Baker E, Page M, Torrance J, Grady R. Effect of desferrioxamine, rhodotorulic acid and cholylhydroxamic acid on transferrin and iron exchange with hepatocytes in culture.Clin. Physiol. Biochem.3, 277–288 (1985).

    CAS  Google Scholar 

  103. Hershko C.1971 Determinants of fecal and urinary iron excretion in desferrioxamine-treated rats.Blood.51,415–425

    Google Scholar 

  104. Lipschitz DA, Simon MO, Lynch SR, Dugard J, Bothwell TH, Charlton RW. Some factors affecting the release of iron from reticuloendothelial cells.Br. J. Haematol.21, 289–303 (1971).

    CAS  Google Scholar 

  105. Sharma BK, Tavill AS, Louis LN, Wiesen E, Vaines AW. Enteral pyridoxal isonicotinoyl hydrazone (PIH) is an effective chelator in experimental iron overload by promotion of biliary iron excretion.Hepatology. 10573 (1989).

    Google Scholar 

  106. Sharma BK, Tavill AS, Louis LN, Vames AW. Predominance ofbiliary iron chelates in iron-loaded ratsin vivoduring i.v. deferoxamine (DF) or pyridoxal isonicotinoyl hydrazone (PIH).Hepatology.8, 1240 (1988).

    Google Scholar 

  107. Kim BK, Huebers HA, Finch CA. Effectiveness of oral iron chelators assayed in the rat.Am..1. Hematol.24, 277–284 (1987).

    Google Scholar 

  108. Pootrakul P, Yansukon P, Piankijagum A, Muangsub W, Brittenham GM. The interference of pyridoxal isonicotinoyl hydrazone with intestinal iron absorption.Ann. N. Y. Acad. Sci.124, 582–584 (1990).

    Google Scholar 

  109. Summers MR, Jacobs A, Tudway D, Perera P, Ricketts C. Studies in desferrioxamine and ferrioxamine metabolism in normal and iron-loaded subjects.Br. J. Haematol.42, 547–555 (1979).

    CAS  Google Scholar 

  110. Djeha A, Brock JH. Uptake and intracellular handling of iron from transferrin and iron chelates by mitogen stimulated mouse lymphocytes.Biochim. Biophys. Acta.1133, 147–152 (1992).

    CAS  Google Scholar 

  111. Alcantara O, Obeid L, Hannun Y, Ponka P, Boldt DH. Regulation of protein kinase C (PKC) expression by iron: effect of different iron compounds on PKC-beta and PKC-alpha gene expression and role of the 5’-flanking region of the PKC-beta gene in the response to ferric transferrin.Blood.84, 3510–3517 (1994).

    CAS  Google Scholar 

  112. Thelander L, Reichard P. Reduction ofribonucleotides.Ann. Rev. Biochem.48, 133–158 (1979).

    CAS  Google Scholar 

  113. Nyholm S, Mann GJ, Johansson AG, Bergeron RJ, Graslund A, Thelander L. Role of ribonucleotide reductase in inhibition of mammalian cell growth by potent iron chelators.J. Biol. Chem.268, 26200–26205 (1993).

    CAS  Google Scholar 

  114. Green DA, Antholine WE, Wong SJ, Richardson DR, Chitambar CR. Inhibition of malignant cell growth by 311, a novel iron chelator of the pyridoxal isonicotinoyl hydrazone class: effect on the R2 subunit of ribonucleotide reductase.Clin. Cancer Res. 73574–3579 (2001).

    CAS  Google Scholar 

  115. Hoffbrand AV, Ganeshaguru K, Hooton JW, Tattersall MH. Effect of iron deficiency and desferrioxamine on DNA synthesis in human cells.Br. J. Haematol.33, 517–526 (1976).

    CAS  Google Scholar 

  116. Hoyes KP, Hider RC, Porter JB. Cell cycle synchronization and growth inhibition by 3-hydroxypyridin-4-one iron chelators in leukemia cell lines.Cancer Res.52, 4591–4599 (1992).

    CAS  Google Scholar 

  117. Brodie C, Siriwardana G, Lucas J, Schleicher R, Terada N, Szepesi A, Gelfand E, Seligman P. Neuroblastoma sensitivity to growth inhibition by deferrioxamine: evidence for a block in GI phase of the cell cycle.Cancer Res.53, 3968–3975 (1993).

    CAS  Google Scholar 

  118. van Reyk D, Sarel S, Hunt N. Inhibition ofin vitrolymphoproliferation by three novel iron chelators of the pyridoxal and salicyl aldehyde hydrazone classes.Biochem. Pharmacol.60, 581–587 (2000).

    Google Scholar 

  119. Bomford A, Isaac J, Roberts S, Edwards A, Young S, Williams R. The effect of desferrioxamine on transferrin receptors, the cell cycle and growth rates of human leukaemic cells.Biochem. J.236, 243–249 (1986).

    CAS  Google Scholar 

  120. Renton FJ, Jeitner TM. Cell cycle-dependent inhibition of the proliferation of human neural tumor cell lines by iron chelators.Biochem. Pharmacol.51, 1553–1561 (1996).

    CAS  Google Scholar 

  121. Levine M. p53, the cellular gatekeeper for growth and division.Cell.88, 323–331 (1997).

    CAS  Google Scholar 

  122. Momand J, Zambetti GP, Olson DC, George D, Levine Al The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation.Cell.69, 1237–1245 (1992).

    CAS  Google Scholar 

  123. Gao J, Richardson DR. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, IV: The mechanisms involved in inhibiting cell-cycle progression.Blood.98, 842–850 (2001).

    CAS  Google Scholar 

  124. Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop.Genes Del .7, 1126–1132 (1993).

    CAS  Google Scholar 

  125. Koh LL, Kon OL, Loh KW, Long YC, Ranford JD, Tan AL, Tjan YY.Complexes of salicylaldehyde acylhydrazones: cytotoxicity, QSAR and crystal structure of the sterically hindered t-butyl dimer.J. /norg. Biochem.72, 155–162 (1998).

    CAS  Google Scholar 

  126. Forsbeck K, Nilsson K, Kontoghiorghes GJ. Variation in iron accumulation, transferrin membrane binding and DNA synthesis in the K-562 and U-937 cell lines induced by chelators and their iron complexes.Eur. J. Haematol.39, 318–325 (1987).

    CAS  Google Scholar 

  127. Edward JT. Partition coefficients of the iron (111) complexes of pyridoxal isonicotinoyl hydrazone and its analogs and the correlation to iron chelation efficacy. Correction of some reported partition coefficients.Biometals.11, 203–205 (1998).

    CAS  Google Scholar 

  128. Richardson DR, Bernhardt PV. Crystal and molecular structure of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and its iron(lll) complex: an iron chelator with anti-tumour activity.J. Biol. Inorg. Chem.4, 266–273 (1999).

    CAS  Google Scholar 

  129. Seligman PA, Schleicher RB, Siriwardana G, Domenico J, Gelfand EW. Effects of agents that inhibit cellular iron incorporation on bladder cancer cell proliferation.Blood.82, 1608–1617 (1993).

    CAS  Google Scholar 

  130. Chitambar CR, Narasimhan J, Guy J, Sem DS, O’Brien WJ. Inhibition of ribonucleotide reductase by gallium in murine leukemic L1210 cells.Cancer Res.51, 6199–6201 (1991).

    CAS  Google Scholar 

  131. Seligman PA, Moran PL, Schleicher RB, Crawford ED. Treatment with gallium nitrate: evidence for interference with iron metabolismin vivo. Am. J. Hematol.41, 232–240 (1992).

    CAS  Google Scholar 

  132. Chitambar CR, Zivkovic Z. Inhibition of hemoglobin production by transferrin-gallium.Blood.69, 144–149 (1987).

    CAS  Google Scholar 

  133. Brittenham GM. Pyridoxal isonicotinoyl hydrazone. Effective iron chelation after oral administration.Ann. N. Y Acad. Sci.612, 315–326 (1990).

    CAS  Google Scholar 

  134. Sookvanichsilp N, Nakomchai S, Weerapradist W. Toxicological study of pyridoxal isonicotinoyl hydrazone: acute and subchronic toxicity.Drug Chem. Toxicol.14, 395–403 (1991).

    CAS  Google Scholar 

  135. Mohan M, Kumar A, Kuo YM. Synthesis, characterization and antitumour activity of manganese(II), cobalt(11), nickel(ll), copper(ll), zinz(11) and platinum(II) complexes of 3- and 5-substituted salicylaldehyde benzoylhydrazones.Inorg. Chim. Acta.136, 65–74 (1987).

    CAS  Google Scholar 

  136. Lees-Gayed NJ, Abou-Taleb MA, El-Bitash IA, Iskander MF. Studies on biologically active acylhydrazones. Part 1. Acid-base equilibria and acid hydrolysis of pyridoxal aroylhydrazones and related compounds.J. Chem. Soc. Perkin 2213–217 (1992).

    Google Scholar 

  137. Schaumburg H, Kaplan J, Windebank A, Vick N, Rasmus S, Pleasure D, Brown MJ. Sensory neuropathy from pyridoxine abuse. A new megavitamin syndrome.N. Engl. J Med.309, 445–448 (1983).

    CAS  Google Scholar 

  138. Scott MD, Ranz A, Kuypers FA, Lubin BH, Meshnick SR. Parasite uptake of desferroxamine: a prerequisite for antimalarial activity.Br. J. Haematol.75, 598–602 (1990).

    CAS  Google Scholar 

  139. Gutteridge JM, Halliwell B. Iron toxicity and oxygen radicals.Bailliere’s Clin. Haematol.2, 195–256 (1989).

    Google Scholar 

  140. Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease.Biochem. J.219, 1–14 (1984).

    CAS  Google Scholar 

  141. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview.Meth. Enzymol.186, 1–85 (1990).

    CAS  Google Scholar 

  142. Reddy BR, Kloner RA, Przyklenk K. Early treatment with deferoxamine limits myocardial ischemic/reperfusion injury.Free Rad. Biol. Med.7, 45–52 (1989).

    CAS  Google Scholar 

  143. Healing G, Gower J, Fuller B, Green C. Intracellular iron redistribution. An important determinant of reperfusion damage to rabbit kidneys.Biochem. Pharmacol.39, 1239–1245 (1990).

    CAS  Google Scholar 

  144. Biemond P, Swaak AJ, van Eijk HG, Koster JF. Superoxide dependent iron release from ferritin in inflammatory diseases.Free Rad. Biol. Med.4, 185–198 (1988).

    CAS  Google Scholar 

  145. Toyokuni S. Iron-induced carcinogenesis: the role of redox regulation.Free Rad. Biol. Med.20, 553–566 (1996).

    CAS  Google Scholar 

  146. Gassen M, Youdim MB. The potential role of iron chelators in the treatment of Parkinson’s disease and related neurological disorders.Pharmacol. Toxicol.80, 159–166 (1997).

    CAS  Google Scholar 

  147. Schulman HM, Hermes-Lima M, Wang EM, PonkaP.In vitroantioxidant properties of the iron chelator pyridoxal isonicotinoyl hydrazone and some of its analogs.Redox Rep.1, 373–378 (1995).

    CAS  Google Scholar 

  148. Santos NC, Castilho RF, Meinicke AR, Hermes-Lima M. The iron chelator pyridoxal isonicotinoyl hydrazone inhibits mitochondrial lipid peroxidation induced by Fe(II)-citrate.Eur. J. Pharmacol.428, 37–44 (2001).

    CAS  Google Scholar 

  149. Fuchs O. Effects of intracellular chelatable iron and oxidative stress on transcription of classical cellular glutathione peroxidase gene in murine erythroleukemia cells.Neoplasma.44, 184–191 (1997).

    CAS  Google Scholar 

  150. Cable H, Lloyd JB. Cellular uptake and release of two contrasting iron chelators.J Pharm. Pharmacol.51, 131–134 (1999).

    CAS  Google Scholar 

  151. Ferrali M, Signorini C, Ciccoli L, Bambagioni S, Rossi V, Pompella A, Comporti M. Protection of erythrocytes against oxidative damage and autologous immunoglobulin G (IgG) binding by iron chelator fluor-benzoilpyridoxal hydrazone.Biochem. Pharmacol.59, 1365–1373 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Buss, J.L., Hermes-Lima, M., Ponka, P. (2002). Pyridoxal Isonicotinoyl hydrazone and its analogues. In: Hershko, C. (eds) Iron Chelation Therapy. Advances in Experimental Medicine and Biology, vol 509. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0593-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0593-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46785-1

  • Online ISBN: 978-1-4615-0593-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics