Pattern Induced by Parameter Modulation in Spatiotemporal Chaos

  • Leone Fronzoni


We consider the effect of a parametric modulation in a system that shows electrohydrodynamic instability with spatiotemporal chaos. This instability appears when an electric field is applied to a sample of Liquid Crystals confined between two conducting plates. The pattern degenerates in to spatiotemporal chaos when the field exceeds a threshold. A suitable modulation of the electric field induces a new ordered pattern in spite of the presence of chaos. A possible interpretation of this phenomena is discussed on the basis of transient travelling waves (TTW) present in the chaotic regime.


Liquid Crystal Hopf Bifurcation Chaotic Dynamic Nematic Liquid Crystal Molecular Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.Poincare’,The Foundation of Science: Science and Method, English. Translation, The Science Press, N.Y. (1921).Google Scholar
  2. 2.
    E. Otto, C. Grebogi and J. A. York.Controlling Chaos Phis. Rev. Lett.64 ,p.1196, (1990).Google Scholar
  3. R. Lima,. and M. Pettini,Suppression of chaos by resonant parametric perturbation ,phys.Rev. A41, pp 726:733 (1990).MathSciNetGoogle Scholar
  4. 3.
    K. Pyragas,Continuous control of chaos by self-controlling feedback, Phys.Lett. A170, pp. 412:428 (1992).CrossRefGoogle Scholar
  5. 4.
    L. Fronzoni, M. Giocondo, and M.Pettini.Experimental evidence of suppression of chaos by resonant parametric perturbation, Phys.Rev. A 43, pp. 6483–6487 (1990).CrossRefGoogle Scholar
  6. 5.
    P.G. de Gennes,The Physics of Liquid Crystals, CALENDRON PRESS, Oxford (1974).Google Scholar
  7. 6.
    E. Dubois-Violette, G Durand, E.Guyon, P. Manneville and P. Pieranski,Instabilities in Nematic Liquid Crystals In Liquid Crystals Suppl. 14, 147.(1978).Google Scholar
  8. 7.
    E.Bodenschatz, W Pesch and L. Kramer,Structure and Dynamics of Dislocations in Anisotropic Pattern-forming System, Physica D32, 135.( 1998).CrossRefGoogle Scholar
  9. 8.
    S. Kai, M. Arakoa, H.Yamazaki and K. Hirakawa,Phy. Soc. of Japan. vol 46, 2, p. 401 ( 1979).CrossRefGoogle Scholar
  10. 9.
    B. van der Pol,On the relaxation Oscillation, Phil. Mag.2, p.978 (1926).Google Scholar
  11. 10.
    R. Ribotta, A. Joets, and L. Lei,Oblique Roll Instability in Electroconvective Anisotropic Fluid, Phys. Rev, Lett.56,1595 (1986).CrossRefGoogle Scholar
  12. 11.
    M. Triber, and L. Kramer,Coupled Complex Ginzburg-Landau Equations for the Weak Eiectrolite Model of Electronvetion, Phys. Rev. E, 58, 1973 (1998).CrossRefGoogle Scholar
  13. 12.
    S.H. Strogatz, and R.E. Morillo.Phase Loking and Critical Phenomena in Lattices of Coupled Nonlinear Oscillators with Random Intrisic Frequencies. Physica D 31, p. 143:168 (1988).MathSciNetMATHCrossRefGoogle Scholar
  14. 13.
    H. Benard,Les Tourbillons Cellulaires dans une Nappe Liquide Transportant de la Chaleur par Convection en Regime Permanent, Ann. Chim. Phys.7(Ser.23),62 (1900).Google Scholar
  15. 14.
    M. Faraday,On the forms and states assumed by fluids in contact with vibrating-elastic surfaces, Philos. Trans. R., Sc. London52,319 (1831).Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Leone Fronzoni
    • 1
  1. 1.Dipartimento di Fisica dell’Università di PisaCISSC and INFNPisaItalia

Personalised recommendations