Integrabilities of the Long-Range t-J Models with Twisted Boundary Conditions

  • James T. Liu
  • D. F. Wang

Abstract

The integrability of the one-dimensional long-range supersymmetric t-J model has previously been established for both open systems and those closed by periodic boundary conditions through explicit construction of its integrals of motion. Recently the system has been extended to include the effect of magnetic flux, which gives rise to a closed chain with twisted boundary conditions. While the t-J model with twisted boundary conditions has been solved for the ground state and full energy spectrum, proof of its integrability has so far been lacking. In this letter we extend the proof of integrability of the long-range supersymmetric t-J model and its SU(m n) generalization to include the case of twisted boundary conditions.

Keywords

Peri Haldane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.Bethe,Z. Phys. 75, 205 (1931).ADSGoogle Scholar
  2. [2]
    E. H. Lieb and Liniger, Phys. Rev. 130, 1605 (1963)MathSciNetADSMATHCrossRefGoogle Scholar
  3. [2a]
    E. H. Lieb, ibid. 130, 1616 (1963).MathSciNetADSMATHGoogle Scholar
  4. [3]
    F. Flicker and E. H. Lieb, Phys. Rev. 161, 179 (1967).ADSCrossRefGoogle Scholar
  5. [4]
    C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967)MathSciNetADSMATHCrossRefGoogle Scholar
  6. [4a]
    M. Gaudin, Phys. Lett. A 24, 55 (1967).ADSGoogle Scholar
  7. [5]
    E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)ADSCrossRefGoogle Scholar
  8. [5a]
    C. N. Yang, ibid. 63, 2144 (1989)ADSCrossRefGoogle Scholar
  9. [5b]
    C. N. Yang and S. C. Zhang, Mod. Phys. Lett. B 4, 759 (1990).ADSGoogle Scholar
  10. [6]
    D. C. Mattis and E. H. Lieb, J. Math. Phys. (N.Y.) 6, 304 (1965).CrossRefGoogle Scholar
  11. [7]
    N. Andrei, K. Furuya and J. H. Lowenstein, Rev. Mod. Phys. 55,331(1983), and references therein.MathSciNetADSCrossRefGoogle Scholar
  12. [8]
    P. B. Wiegmann, J. Phys. A 14, 1463 (1981).Google Scholar
  13. [9]
    F. D. M. Haldane, Phys. Rev. Lett. 60, 635 (1988).MathSciNetADSCrossRefGoogle Scholar
  14. [10]
    B. S. Shastry, Phys. Rev. Lett. 60, 639 (1988).ADSCrossRefGoogle Scholar
  15. [11]
    Y. Kuramoto and H. Yokoyama, Phys. Rev. Lett. 67, 1338 (1991).ADSCrossRefGoogle Scholar
  16. [12]
    N. Kawakami, Phys. Rev. B 46, 1005 (1992).ADSGoogle Scholar
  17. [13]
    D. F. Wang, J. T. Liu and P. Coleman, Phys. Rev. B 46, 6639 (1992).ADSGoogle Scholar
  18. [14]
    Z. N. C. Ha and F. D. M. Haldane, Phys. Rev. B 46, 9359 (1992).ADSGoogle Scholar
  19. [15]
    B. Sutherland J. Math. Phys. (N.Y.) 12, 246 (1971).CrossRefGoogle Scholar
  20. [15a]
    B. Sutherland J. Math.Phys. (N.Y.) 12, 251 (1971)CrossRefGoogle Scholar
  21. [15b]
    B. Sutherland J. MathPhys. Rev. A 4, 2019 (1971)ADSGoogle Scholar
  22. [15c]
    B. Sutherland J. MathPhys. Rev.5, 1372 (1972)CrossRefGoogle Scholar
  23. [15d]
    F. Calogero, J. Math. Phys. (N.Y.) 10, 2191 (1969)CrossRefGoogle Scholar
  24. [15e]
    F. Calogero, J. Math. Phys. (N.Y.) 10, 2197 (1969).CrossRefGoogle Scholar
  25. [16]
    F. D. M. Haldane, Phys. Rev. Lett. 66, 1529 (1991).MathSciNetADSMATHCrossRefGoogle Scholar
  26. [17]
    Y. S. Wu, Phys. Rev. Lett. 73, 922 (1994).ADSCrossRefGoogle Scholar
  27. [18]
    F. Gebhard and A. Ruckenstein, Phys. Rev. Lett. 68, 244 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  28. [19]
    T. Fukui and N. Kawakami, Phys. Rev. Lett. 76, 4242 (1996).ADSCrossRefGoogle Scholar
  29. [20]
    T. Fukui and N. Kawakami, Phys. Rev. B 54, 5346 (1996).ADSGoogle Scholar
  30. [21]
    James T. Liu and D. F. Wang (unpublished).Google Scholar
  31. [22]
    A. P. Polychronakos, Phys. Rev. Lett. 69, 703 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  32. [22a]
    A. P. Polychronakos, Phys. Rev. Lett.70, 2329 (1993).ADSCrossRefGoogle Scholar
  33. [23]
    M. Fowler and J. A. Minahan, Phys. Rev. Lett. 70, 2325 (1993).ADSCrossRefGoogle Scholar
  34. [24]
    L. Brink, T. H. Hansson and M. A. Vasiliev, Phys. Lett. B 286, 109 (1992).MathSciNetADSGoogle Scholar
  35. [25]
    V. I. Inozemtsev, J. Stat. Phys. 59, 1143 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  36. [26]
    D. F. Wang and C. Gruber, Phys. Rev. B 49, 15 712 (1994).Google Scholar
  37. [27]
    C. Gruber and D. F. Wang, Phys. Rev. B 50, 3103 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • James T. Liu
    • 1
  • D. F. Wang
    • 2
  1. 1.Department of PhysicsThe Rockefeller UniversityNew YorkUSA
  2. 2.Institut de Physique ThéoriqueEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations