Advertisement

Thermal Electron Capture by some Halocarbons

  • W. Barszczewska
  • J. Kopyra
  • J. Wnorowska
  • I. Szamrej
  • M. Foryś

Abstract

Halocarbons play important and very disgraceful role in the atmosphere not only destroying the ozone layer but also acting as the greenhouse agents. To diminish their negative influence on the environment it is necessary to find the methods which allow to destroy existing in the atmosphere halocarbons. There are some attempts for develop such procedure. The proposed techniques include several plasma methods: by an electron beam or by using a free localized microwave discharges1. The key processes in these techniques are electron attachment reactions. So, for modeling the system it is necessary to know the rate of these processes, their mechanism and products.

Keywords

Electron Capture Halogen Atom Electron Cyclotron Resonance Microwave Discharge Electron Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. L. Alexandrov, S. V. Dobkin, A. M. Konchakov, and D. A. Novitskii, Catalytic decomposition of freons in microwave discharge afterglow, Plasma Phys. Rep. 20(5), 442–448 (1994).Google Scholar
  2. 2.
    M. Foryś, and I. Szamej, The dependence of electron capture rate constants on same molecular parameters, I. Radwanal. Nucl. Chem. 232,67–69 (1998).Google Scholar
  3. 3.
    I. Szamrej, in: Gaseous Dielectrics VIII, edited by L. G. Christophorou and J. K. Olthoff (Kluwer Academic / Plenum Publishers, New York, 1998), pp. 63–68.CrossRefGoogle Scholar
  4. 4.
    I. Szamrej, and M. Foryś, The role of van der Waals complexes in the thermal electron attachment processes in the gas phase, Prog. React. Kinet. 23,117–143 (1998).Google Scholar
  5. 5.
    A. Rosa, W. Barszczewska, M. Foryś, and I. Szamrej, Electron capture by haloethanes in a carbon dioxide buffer gas, Int. J. Mass Spectrom. 205,85–92 (2001).CrossRefGoogle Scholar
  6. 6.
    A. Rosa, M. Foryś, and I. Szamrej, in: Gaseous Dielectrics VIII, edited by L. G. Christophorou and J. K. Olthoff (Kluwer Academic /Plenum Publishers, New York, 1998), pp. 69–71.CrossRefGoogle Scholar
  7. 7.
    P. G. Datskos, L. G. Christophorou, and J. G. Carter, Effect of temperature on the attachment of slow (≤leV) electrons to CH3Br,J. Chem. Phys. 97(12), 9031–9035 (1992).CrossRefGoogle Scholar
  8. 8.
    K. M. Bansal, and R. W. Fessenden, Electron disappearance in pulse irradiated CH3C1, C2H5C1, CH3Br, and C2H5Br, Chem. Phys. Lett. 15(1), 21–23 (1972).CrossRefGoogle Scholar
  9. 9.
    KG. Monthes, E. Schultes, and R. N. Schindler, Application of electron cyclotron resonance technique in studies of electron capture processes in the thermal energy range, J. Phys. Chem. 76(25), 3758–3764 (1972).CrossRefGoogle Scholar
  10. 10.
    T. Sunagawa, and H. Shimamori, Low energy electron attachment to brominated ethanes and ethylenes, Int. J. Mass Spectrom. Ion Proc. 149(150), 123–129 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • W. Barszczewska
  • J. Kopyra
  • J. Wnorowska
  • I. Szamrej
  • M. Foryś
    • 1
  1. 1.Chemistry DepartmentUniversity of PodlasieSiedlcePoland

Personalised recommendations