Advertisement

Rate Constants for Unimolecular Decomposition of SF6

  • Yicheng Wang
  • R. L. Champion
  • I. V. Dyakov
  • B. L. Peko

Abstract

Sulfur hexafluoride (SF6) is widely used as a gaseous dielectric in high-voltage applications due to its extremely large cross section for electron attachment [1-3] and the stability of SF6 with respect to decomposition in subsequent collisions with SF6 [4]. It is also recognized as a potent greenhouse gas and it has been suggested that a mixture of SF6 and N2 might serve as a substitute for pure SF6 in certain applications which require gaseous dielectrics [5,6]. Even with a very low SF6 content, a SF6/N2 mixture exhibits many of the desirable properties of SF6 as a gaseous dielectric. It has been suggested that this mixture may constitute a synergistic combination: the buffer gas (N2) serves to cool energetic electrons into the low-energy region where the electronegative gas (SF6) captures them with a remarkably high cross section, thereby inhibiting the buildup of free electrons that could cause ionization leading to electrical breakdown. The dielectric properties of this mixture have been the subject of numerous recent investigations [5,6].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    . L.G. Christophorou and J.K. Olthoff, J, Phys. Chem. Ref. Data, 29, 267 (2000).CrossRefGoogle Scholar
  2. [2].
    . L.E. Kline, D.K. Davies, C.L. Chen, and PJ. Chantry, J. Appl. Phys. 50, 6789 (1979).CrossRefGoogle Scholar
  3. [3].
    . A. Chutjian and S. H. Alajian, Phys. Rev. A 31, 1841 (1986).Google Scholar
  4. [4].
    . Y. Wang, R. L. Champion, L. D. Doverspike, J. K. Olthoff, and R. J. Van Brunt, J. Chem. Phys. 91, 2254 (1989).CrossRefGoogle Scholar
  5. [5].
    . L.G. Christophorou and RJ. Van Brunt, IEEE Tran. Dielect. Electr. Insul. 2, 952 (1995).CrossRefGoogle Scholar
  6. [6].
    . L.G. Christophorou, J.K. Olthoff and D.S. Green, “Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure SF6,”NIST Technical Note 1425 (1997).Google Scholar
  7. [7].
    . D. Smith, P. Spanel, S. Matejcik, A. Stamatovic, T.D. Mark, T. Jaffke, and E. Illenberger, Chem. Phys. Lett. 240, 481 (1995).CrossRefGoogle Scholar
  8. [8].
    . J.P. Astruc. R. Barbe, A. Lagreze, and J.P. Schermann, Chem Phys. 75, 405 (1983).CrossRefGoogle Scholar
  9. [9].
    . C.E. Klots, J. Phys. Chem. 75,1526 (1971); J. Chem. Phys. 64,4269 (1976).CrossRefGoogle Scholar
  10. C.E. KlotsJ. Chem. Phys. 64,4269 (1976).CrossRefGoogle Scholar
  11. [10]
    R.L.Champion, I.V. Dyakov, B.L. Peko, and Y. Wang, J. Chem. Phys., submitted.Google Scholar
  12. [11].
    . S. E. Haywood, L. D. Doverspike, R. L. Champion, E. Herbst, B. K. Annis, and S. Datz, J. Chem. Phys. 74, 2845 (1980).CrossRefGoogle Scholar
  13. [12].
    . G.Z. Whitten and B.S. Rabinowitch, J. Chem. Phys. 41, 1883 (1964).CrossRefGoogle Scholar
  14. [13].
    . C.L. Lugez, M.E. Jacox, R.A. King, and H.F. Schaefer III, J. Chem. Phys. 108, 9639 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Yicheng Wang
    • 1
  • R. L. Champion
    • 2
  • I. V. Dyakov
    • 2
  • B. L. Peko
    • 2
    • 3
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.College of William and MaryWilliamsburgUSA
  3. 3.Dept. of PhysicsUniversity of DenverDenverUSA

Personalised recommendations