Advertisement

Benzene Destruction in Direct Current Atmospheric Pressure Air Glow Discharges

  • Chunqi Jiang
  • Robert H. Stark
  • Karl H. Schoenbach

Abstract

Chemical and semiconductor industries are using volatile organic compounds (VOCs) such as toluene, xylene, trichloro-ethylene (TCE), trichloroethane (TCA), benzene, and acetone as solvents and for substrate cleaning [1]. However, the use of VOCs poses considerable health hazards. For example, inhalation of toluene with concentrations of 600 ppm for more than eight hours causes headache and dizziness [2]. Benzene is carcinogenic at long term exposure [2].

Keywords

Glow Discharge Destruction Rate Benzene Concentration Cathode Fall Pressure Glow Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [I]
    K. Vercammen, A. Berezin, F. Lox, and J. Chang, “Non-Thermal Plasma Techniques for the Reduction of Volatile Organic Compounds in Air Streams: A Critical Review,” J. Adv. Oxid. Technol. 2, 312 (1997).Google Scholar
  2. [2]
    H. J. Rafson, Odor and VOC Control Handbook. McGraw-Hill (1998).Google Scholar
  3. [3]
    K. Urashima and J. Chang, “Removal of Volatile Organic Compunds from Air Streams and Industrial Flue Gases by Non-Thermal Plasma Technology,” IEEE Transactions on Dielectrics and Electrical Insulation 7,602 (2000).CrossRefGoogle Scholar
  4. [4]
    D. L. McCorkle, W. Ding, C. Ma and L. A. Pinnaduwage, “Dissociation of Benzene and Methylene Chloride Based on Enhanced Dissociative Electron Attachment to Highly Excited Molecules,” J. Phys. D: Appl. Phys. 32,46 (1999).CrossRefGoogle Scholar
  5. [5]
    D. L. McCorkle, W. Ding, C. Ma and L. A. Pinnaduwage, “Dissociation of Benzene in a Pulsed Glow Discharge,” J. Appl. Phys. 86,3550 (1999).CrossRefGoogle Scholar
  6. [6]
    R. H. Stark and K. H. Schoenbach, “Direct Current High-Pressure Glow Discharges,” J. Appl. Phys. 85, 2075 (1999).CrossRefGoogle Scholar
  7. [7]
    R. H. Stark and K. H. Schoenbach, “Direct Current Glow Discharges in Atmospheric Air,” Appl. Phys. Lett. 89,3568 (2001).Google Scholar
  8. [8]
    F. Leipold, R. H. Stark, A. El-Habachi, and K. H. Schoenbach, “Electron Density Measurements in an Atmospheric Pressure Air Plasma by Means of Infrared (IR) Heterodyne Interferometry,” J. Phys. D: Appl. Phys. 33,2268 (2000).CrossRefGoogle Scholar
  9. [9]
    E. E. Rennie, C. A. F. Johnson, J. E. Parker, D. M. P. Holland, D. A. Shaw, and M. A. Hays, “A photoabsorption, photodissociation and photoelectron spectroscopy study of C6H6 and C6D6,” Chem. Phys. 229,107 (1998).CrossRefGoogle Scholar
  10. [10]
    H. Abouelaziz, J. C. Gomet, D. Pasquerault, R. B. Rowe, and J. B. A Mitchell, “Measurements of C3H3 +, C5H3 +, C6H6 +, C7H5 +, C10H8 + Dissociative Recombination Rate Coefficients,”J. Chem. Phys. 99, 237 (1993).CrossRefGoogle Scholar
  11. [11]
    Y. P. Raizer. Gas Discharge Phvsics. 2nd ed. Springer. Berlin, Germany (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Chunqi Jiang
    • 1
  • Robert H. Stark
    • 1
  • Karl H. Schoenbach
    • 1
  1. 1.Physical Electronics Research Institute, Department of Electrical and Computer EngineeringOld Dominion UniversityNorfolkUSA

Personalised recommendations