Benzene Destruction in Direct Current Atmospheric Pressure Air Glow Discharges

  • Chunqi Jiang
  • Robert H. Stark
  • Karl H. Schoenbach


Chemical and semiconductor industries are using volatile organic compounds (VOCs) such as toluene, xylene, trichloro-ethylene (TCE), trichloroethane (TCA), benzene, and acetone as solvents and for substrate cleaning [1]. However, the use of VOCs poses considerable health hazards. For example, inhalation of toluene with concentrations of 600 ppm for more than eight hours causes headache and dizziness [2]. Benzene is carcinogenic at long term exposure [2].


Acetone Benzene Recombination Hexane Toluene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [I]
    K. Vercammen, A. Berezin, F. Lox, and J. Chang, “Non-Thermal Plasma Techniques for the Reduction of Volatile Organic Compounds in Air Streams: A Critical Review,” J. Adv. Oxid. Technol. 2, 312 (1997).Google Scholar
  2. [2]
    H. J. Rafson, Odor and VOC Control Handbook. McGraw-Hill (1998).Google Scholar
  3. [3]
    K. Urashima and J. Chang, “Removal of Volatile Organic Compunds from Air Streams and Industrial Flue Gases by Non-Thermal Plasma Technology,” IEEE Transactions on Dielectrics and Electrical Insulation 7,602 (2000).CrossRefGoogle Scholar
  4. [4]
    D. L. McCorkle, W. Ding, C. Ma and L. A. Pinnaduwage, “Dissociation of Benzene and Methylene Chloride Based on Enhanced Dissociative Electron Attachment to Highly Excited Molecules,” J. Phys. D: Appl. Phys. 32,46 (1999).CrossRefGoogle Scholar
  5. [5]
    D. L. McCorkle, W. Ding, C. Ma and L. A. Pinnaduwage, “Dissociation of Benzene in a Pulsed Glow Discharge,” J. Appl. Phys. 86,3550 (1999).CrossRefGoogle Scholar
  6. [6]
    R. H. Stark and K. H. Schoenbach, “Direct Current High-Pressure Glow Discharges,” J. Appl. Phys. 85, 2075 (1999).CrossRefGoogle Scholar
  7. [7]
    R. H. Stark and K. H. Schoenbach, “Direct Current Glow Discharges in Atmospheric Air,” Appl. Phys. Lett. 89,3568 (2001).Google Scholar
  8. [8]
    F. Leipold, R. H. Stark, A. El-Habachi, and K. H. Schoenbach, “Electron Density Measurements in an Atmospheric Pressure Air Plasma by Means of Infrared (IR) Heterodyne Interferometry,” J. Phys. D: Appl. Phys. 33,2268 (2000).CrossRefGoogle Scholar
  9. [9]
    E. E. Rennie, C. A. F. Johnson, J. E. Parker, D. M. P. Holland, D. A. Shaw, and M. A. Hays, “A photoabsorption, photodissociation and photoelectron spectroscopy study of C6H6 and C6D6,” Chem. Phys. 229,107 (1998).CrossRefGoogle Scholar
  10. [10]
    H. Abouelaziz, J. C. Gomet, D. Pasquerault, R. B. Rowe, and J. B. A Mitchell, “Measurements of C3H3 +, C5H3 +, C6H6 +, C7H5 +, C10H8 + Dissociative Recombination Rate Coefficients,”J. Chem. Phys. 99, 237 (1993).CrossRefGoogle Scholar
  11. [11]
    Y. P. Raizer. Gas Discharge Phvsics. 2nd ed. Springer. Berlin, Germany (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Chunqi Jiang
    • 1
  • Robert H. Stark
    • 1
  • Karl H. Schoenbach
    • 1
  1. 1.Physical Electronics Research Institute, Department of Electrical and Computer EngineeringOld Dominion UniversityNorfolkUSA

Personalised recommendations