Ion Motion in Dielectric Gases

  • Jaime de Urquijo


Dielectric gases are used in a wide variety of important applications such as gas insulation and semiconductor fabrication (Christophorou 2000). As important as their use is their abatement (Kiehlbauch 2001), since gases like SF6 or some perfluorocarbons are potent greenhouse gases. The above processes require that at some stage the gas be subjected to discharge conditions, which are nowadays optimized by previous modeling and process simulation, which in turn demand the knowledge of cross sections and/or swarm and transport data for the numerous physico-chemical processes occuring in the discharge. It is well known that the extent of the present quantitative knowledge on electron-molecule (atom) interactions with dielectric gases, like electron scattering, electron impact ionization and dissociation, and electron transport, by far overwhelms that on ion-molecule (atom) interactions, in the form of elastic and inelastic momentum transfer and reaction cross sections, coefficients of mobility, diffusion and reaction rates, to name only the most relevant quantities. There exist many cases in the literature where a researcher faces the problem of having only meagre, or even lacking, ion swarm or cross section data to provide a quantitative explanation to the phenomenon under study or simulation.


Drift Velocity Mobility Data Transport Data Semiconductor Fabrication Unknown Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basurto E., de Urquijo J., Alvarez L, and Cisneros C., 2000, Phys. Rev. E, 61:3053CrossRefGoogle Scholar
  2. Basurto E., and de Urquijo J., 2001a, To be published in Phys. Rev. E, Google Scholar
  3. Basurto E., and de Urquijo J., 2001b, To be published in J. Appl. Phys., Google Scholar
  4. Beaty E.C., and Patterson P.L, 1965, Phys. Rev .,137:346CrossRefGoogle Scholar
  5. Brand K.P., and Jungblut H., 1983, J. Chem. Phys., 78:1999CrossRefGoogle Scholar
  6. Christophorou L.G., and Olthoff J.K., 2000a, Electron collision data for plasma-processing gases, in Advances in Atomic, Molecular, and Optical Physics, 44:59–98CrossRefGoogle Scholar
  7. Chiristophorou L.G., and Olthoff J.K., 2000b, J. Phys. Chem. Ref.Data, 29:267CrossRefGoogle Scholar
  8. de Urquijo J., 1980, Ph D Thesis, Victoria University of Manchester, UKGoogle Scholar
  9. de Urquijo J., Cisneros C., and Alvarez I., 1985, J. Phys. D., 18:2017CrossRefGoogle Scholar
  10. de Urquijo J,., Alvarez I.,Cisneros C., and Martinez H., 1990a, A survey of recent research on ion transport in SF6,& in Nonequilibrium Effects in Ion and Electron Transport, J.W. Gallagher etal, ed, Plenum Press, pp. 211–227CrossRefGoogle Scholar
  11. de Urquijo J., Alvarez L,Cisneros C., and Martinez H., 1990b, J. Phys. D., 23:778CrossRefGoogle Scholar
  12. de Urquijo J., Alvarez I., Martinez H., and Cisneros C., 1991, J. Phys. D, 24:664CrossRefGoogle Scholar
  13. de Urquijo J., and Cisneros C., Martinez H., and Alvarez I., 1992, J. Phys. D, 25:1277CrossRefGoogle Scholar
  14. de Urquijo J., Alvarez I., Cisneros C., and Martínez H., 1996, Int. J. Mass Spectrom. Ion Processes., 154:25CrossRefGoogle Scholar
  15. de Urquijo J., Dominguez I., Alvarez I., and Cisneros C., 1997, J. Phys. B, 30:4395CrossRefGoogle Scholar
  16. de Urquyo J., Arriaga C. A., Cisneros C., and Alvarez I., 1999, J. Phys. D, 32:41CrossRefGoogle Scholar
  17. de Urquijo J., Basurto E., and Hemández-Ávila, XL., 2001, To be published Google Scholar
  18. Dotan L, Albritton D.L., Lindinger W., and Pahl J., 1976, J. Chem. Phys., 65:5028CrossRefGoogle Scholar
  19. Ellis H.W., Pai R.Y., McDaniel E.W., Mason E.A., and Viehland L.A., 1976, Atom. DataNucl. Data Tables, 17:177CrossRefGoogle Scholar
  20. Ellis H.W., McDaniel E.W., Albritton D.L., Viehland L. A., Lin S.L., and Mason E.A., 1978, Atom. Data Nucl.DataTables., 22:179CrossRefGoogle Scholar
  21. Ellis H.W., Thackston M.G., McDaniel E.W., and Mason E.A., 1984,Atom. DataNucl. Data Tables., 31:113CrossRefGoogle Scholar
  22. Fleming I. A., and Rees J A., 1969, J. Phys. B., 2:777CrossRefGoogle Scholar
  23. Hegerberg R., Elford M.T., and Skullerud H.R., 1982, J. Phys. B, 15:797CrossRefGoogle Scholar
  24. Hennad A., Eichwald O., Yousfi M, and Lamrous O,1997, J. Phys. III, 7:1877Google Scholar
  25. Johnsen R., and Biondi M.A., 1972,J. Chem. Phys.,57:5292CrossRefGoogle Scholar
  26. Kaneko Y., Koizumi T., and Kobayashi N, 1976, J. Phys. Soc. Japan, 40:605CrossRefGoogle Scholar
  27. Kanzari Z., Yousfi M.,and Hamani A, 1998., J. Appl. Phys., 84:4161CrossRefGoogle Scholar
  28. Kiehlbauch M.W., and Graves, D. B, 2001,J. Appl. Phys., 89:2047CrossRefGoogle Scholar
  29. Mason E.A., and Mc. Daniel E. W., 1988, Transport Properties of Ions in Gases, Wiley, New York.CrossRefGoogle Scholar
  30. McDaniel E. W., and Mason E. A., 1973, The Mobility and Diffusion of Ions in Gases, Wiley, New York.Google Scholar
  31. McNight L.G., 1970, Phys. Rev. A, 2:762CrossRefGoogle Scholar
  32. Moseley J.T., Snuggs R.M., Martin D.W., and McDaniel E.W., 1969, Phys. Rev.,178:240CrossRefGoogle Scholar
  33. Nakamura Y., 1988, J. Phys. D, 21:67CrossRefGoogle Scholar
  34. Patterson P.L., 1970,J. Chem. Phys., 53:696CrossRefGoogle Scholar
  35. Purdie P.H., and Fletcher X, 1989, J. Phys. D., 22:759CrossRefGoogle Scholar
  36. Qiu X.Q., Chalmers I.D., and Coventry P., 1999, J. Phys. D., 32:2918CrossRefGoogle Scholar
  37. Raether H, 1964, Electron Avalanches and Breakdown in Gases, Butterworths, LondonGoogle Scholar
  38. Radovanov S.B., Van Brunt R.J., Olthoff J.K., and Jelekovic B.M., 1995, Phys. Rev. E, 51:6036CrossRefGoogle Scholar
  39. Rao M.V. V.S., Van Brunt R.J., and Olthoff J.K., 1996, Phys. Rev. E., 54:5641CrossRefGoogle Scholar
  40. Rao M. V.V.S., Van Brunt R.J., and Olthoff j.K., 1999, Phys. Rev. E, 59:4565CrossRefGoogle Scholar
  41. Snuggs R.M., Volz D.J., Schummers J.H., Martin D.W., and McDaniel E.W., 1971,Phys. Rev. A, 3:477CrossRefGoogle Scholar
  42. Talib Z. A., and Saporoschenko M, 1992, Int. J. Mass Spectrom. Ion Processes, 116:1CrossRefGoogle Scholar
  43. Talib Z. A., and Saporoschenko M, 1993, Aust. J. Phys., 46:799Google Scholar
  44. Talib Z. A., and Saporoschenko M, 1994,J. Phys. D, 27:2307CrossRefGoogle Scholar
  45. Verhaart H.F.A., and van der Laan P.C.T., 1982, J Appl Phys., 53:1430CrossRefGoogle Scholar
  46. Viehland L.A., and Fahey D.W., 1983,J. Chem. Phys., 78:435CrossRefGoogle Scholar
  47. Viehland L.A., and Mason E.A., 1995, Atom. DataNucl. Data Tables., 60:37CrossRefGoogle Scholar
  48. Wetzer J.M., and Wen C, 1991,J. Phys. D, 24:1964CrossRefGoogle Scholar
  49. Yousfi M, Hennad A., and Eichwald O., 1998,J. Appl. Phys., 84:107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jaime de Urquijo
    • 1
  1. 1.Centro de Ciencias FísicasUNAMCuernavacaMéxico

Personalised recommendations