Advertisement

A Hybrid PIC-MCC/Fluid Model for Streamer Discharges under High Gas Pressures

  • W. Pfeiffer
  • L. Z. Tong
  • D. Schoen

Abstract

This paper proposes a hybrid PIC-MCC/fluid model for streamer discharges in a needle-plane electrode system at a SF6 gas pressure of 0.1 MPa. The Particle-in-cell and Monte Carlo (PIC-MCC) scheme is used to follow electron kinetics, and calculate electron drift velocity and the rate coefficients α ( ionisation ) and η ( attachment) in the region of highly non-uniform field. The obtained data are used in fluid model to find the charge density distribution of ions and electrons. The simulation results show the streamer formation and development and prove the effectiveness of the hybrid model.

Keywords

Monte Carlo Electric Field Distribution Streamer Discharge Streamer Formation Streamer Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Liu and G.R. Govinda Raju, Streamer formation and Monte Carlo space-charge field calculation in SF6, IEEE Trans. Elect. Insul., 28(2), pp. 261270 (1993).CrossRefGoogle Scholar
  2. 2.
    Bai-Lin Qin and Patrick D. Pedrow, Particle-in-cell simulation of bipolar dc corona, IEEE Trans. Diele. Elect.Insul., 1(6), pp.11041118 (1994).CrossRefGoogle Scholar
  3. 3.
    W. Pfeiffer, L. Z. Tong, D. Schoen, Two Dimensional Particle-in-cell Simulation of Predischarge Phenomena along an Insulator, this issue.Google Scholar
  4. 4.
    S. K. Dhali and A. K. Pal, Numerical simulation of streamers in SF6, J. Appl. Phys. 63(5), pp. 1355–1362 (1988).CrossRefGoogle Scholar
  5. 5.
    R. Morrow, Theory of positive corona in SF6 due to a voltage impulse, IEEE Trans. Plasma Sci., 19(2), pp. 86–94 (1991).CrossRefGoogle Scholar
  6. 6.
    L. Niemeyer, A stepped leader random walk model, J. Phys. D: Appl. Phys. 20, pp. 897–906 (1987).CrossRefGoogle Scholar
  7. 7.
    L. Niemeyer, L. Ullrich, and N. Wiegart, The mechanism of leader breakdown in electronegative gases, IEEE Trans. Elect. Insul., 24(2), pp. 309–324 (1989).CrossRefGoogle Scholar
  8. 8.
    R. Morrow, A survey of the electron and ion transport properties of SF6, IEEE Trans. Plasma Science, 14(3), pp. 234–239 (1986).CrossRefGoogle Scholar
  9. 9.
    R. Morrow, Properties of streamers and streamer channels in SF6, Phys. Rev. A, 35, pp. 1778–1785 (1987).CrossRefGoogle Scholar
  10. 10.
    V. Vahedi and M. Surendra, A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges, Comput. Phys. Commun., 87, pp. 179–198 (1995).CrossRefGoogle Scholar
  11. 11.
    W. Pfeiffer, D. Schoen, and L. Z. Tong, Simulation of predischarge processes in SF6/N2 mixtures stressed by very fast transient voltage stress, IEEE Conf. on Elect. Insul. and Diele. Phenomena, Texas, pp. 391–394 (1999).Google Scholar
  12. 12.
    W. Pfeiffer, D. Schoen, and L. Z. Tong, Simulation of prebreakdown phenomena at a gas/solid interface in a SF6lN2 mixtures stressed by very fast transient voltage stress, IEEE Int. Symposium on Elect. Insul., CA, pp. 408–411 (2000).Google Scholar
  13. 13.
    K. Satoh, H. Itoh, Y. Nakao, et al., Electron swarm development in SF6: II. Monte Carlo simulation, J. Phys. D. Appl. Phys. 21, pp. 931–936 (1988).CrossRefGoogle Scholar
  14. 14.
    I. Abbas and P. Bayle, A critical analysis of ionising wave propagation mechanisms in breakdown, J. Phys. D: Appl. Phys., 13, pp. 1055–1068 (1980).CrossRefGoogle Scholar
  15. 15.
    R. Morrow and L. E. Cram, Flux-corrected transport and diffusion on a nonuniform mesh, J. Computational Phys., 57, pp. 129–136 (1985).zbMATHCrossRefGoogle Scholar
  16. 16.
    P. Steinle and R. Morrow, An implicit flux-corrected transport algorithm, J. Computational Phys., 80, pp. 61–71 (1989).zbMATHCrossRefGoogle Scholar
  17. 17.
    A. J. Davies and C. J. Evans, Field distortion in gaseous discharges between parallel-plate electrodes, Proc. IEE 114, pp. 1547–1550(1967).Google Scholar
  18. 18.
    R. Morrow, Theory of negative corona in oxygen, Phys. Rev. A, 32(3), pp. 1799–1089 (1985).CrossRefGoogle Scholar
  19. 19.
    W. L. Lama and C. F. Gallo, Systematic study of the electrical characteristics of the 201C Trichei 201D current pulses from negative needle to plane coronas, J. Appl. Phys., 45, pp. 103–113 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • W. Pfeiffer
  • L. Z. Tong
  • D. Schoen
    • 1
  1. 1.Laboratory for Electrical Measuring Techniques at Darmstadt University of TechnologyGermany

Personalised recommendations